期刊文献+

基于遗传退火算法的无线传感数据采集研究

Study on Wireless Sensing Data Acquisition Based on Genetic Annealing Algorithm
下载PDF
导出
摘要 随着科技的进步与社会的发展,无线传感网络进入高速发展阶段,越来越多的学者开始对无线传感网络数据采集进行研究。本文根据目前存在的研究方法,提出了一种基于无线传感网络数据采集的改进退火算法,该算法在传统模拟退火算法的基础上,引入遗传算法,改进种群的多样性,对收敛性进行优化,从而加强建筑结构监测的精确度。对比测试结果表明,基于改进退火算法的无线传感网络数据采集在实际过程中切实有效,可以对数据采集做到科学、精确的检测效果。 With the development of technology and society, wireless sensing network steps up its pace and more and more researchers are conducting the study on the wireless sensing network data acquisition. In light of current research methods, this paper proposes an improved annealing algorithm based on data acquisition for wireless sensing network. It introduces the genetic algorithm on the basis of traditional simulated annealing algorithm, improves the variety of population and optimizes the convergence so as to increase the accuracy of architectural structure monitoring. The comparison tests show that the wireless sensing network data acquisition based on improved annealing algorithm is efficient and precise in practice.
作者 陈俊伟
出处 《科技通报》 北大核心 2014年第7期127-130,共4页 Bulletin of Science and Technology
关键词 无线传感网络 数据采集 模拟退火算法 遗传算法 wireless sensing network data acquisition simulated annealing algorithm genetic algorithm
  • 相关文献

参考文献7

  • 1Tengyue Mao, Zhengquan Xu, Rui Hou, Min Peng. On In- ternet Topology Modeling and an Improved BA Model[J]. Journal of Networks. 2012,6(3): 454-461.
  • 2Lejiang Guo, Qiang Li, Fangxin Chen. A Novel Cluster- head Selection Algorithm Based on Hybrid Genetic Opti- mization for Wireless Sensor Networks[J]. Journal of Net- works,2011,6(5): 815-822.
  • 3Bai Jie, Sun Kai, Yang Gen Ke. Mathematical Model and Hybrid Scatter Search for Cost Driven Job-shop Schedul- ing Problem[J]. Journal of Networks,2011.6(7): 974-981.
  • 4A. Haq, M. Saravanan, A. Vivekraj, and T. Prasad.A scat- ter search approach for general flowshop scheduling prob- lem[J].International Journal of Advanced Manufacturing Technology, 2007,31 (7): 731-736.
  • 5L W Jiang, Y Z Lu, Y W Chen.Cost Driven Solutions for Job-shop Scheduling with GA[J].Control Engineering of China. 2007,44: 72-74.
  • 6D Y Sha and C Y Hsu.A hybrid particle swarm optimiza- tion for job shop scheduling problem[J].Computers & In- dustrial Engineering, 2006,5: 791-808.
  • 7V. P. Eswaramurthy and A. Tamilarasi.Tabu search strate- gies for solving job shop scheduling problems[J].Journal of Advanced Manufacturing Systems, 2007,6(1): 59-75.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部