期刊文献+

加法幂等半环和坡代数在网络路径优化问题中的应用 被引量:1

Application of Additively Idempotent Semiring and Incline Algebra in the Optimization Problems of Network Paths
下载PDF
导出
摘要 对加法幂等半环上矩阵幂收敛的条件,以及加法幂等半环和坡代数赋权图路径优化问题与伴随矩阵幂的关系进行了研究,优化问题是在加法诱导的偏序≤下考虑的.特别,证明了对于选择的加法幂等半环E上的n阶赋权图G,如果其伴随矩阵A满足aij=e,且对G的任一基本回路p,权w(p)≤e,e是E的乘法幺元,则An-1的(i,j)分量表示从顶点i到j的所有路径的权在偏序≤下的最大元,且最大元一定在某一基本路径上取得.坡代数赋权图的结果作为特例得到.最后给出了几个应用的实例.说明加法幂等半环赋权图的这类广义路径优化问题仍可用矩阵幂的方法来解. The convergent conditions for the powers of a matrix over an additively idempotent semiring and the relationship between the path optimization problem and the adjoint matrix powers for a weighted graph over an additively idempotent semiring and an incline algebra are investigated. The optimization problem is considered under the partial order ≤ induced by addition. In particular, it is proved that for an n-th order weighted graph G over a selective and additively idempotent semiring E, if its adjoint matrix A satisfies au =e and the weight w(p)≤e for any elementary circuit p of G, where e is the multiplicative identity, then the (i,j) entry of A(n-i) denotes the greatest element of weights of all the paths from vertex i to j under the partial order 4,and the greatest element is achieved on some elementary path. The results for a weighted graph over incline algebra are obtained as special cases. Finally, some application examples are given. It is indicated that the generalized path optimization problem for a weighted graph over an additively idempotent semiring can still be solved by using the methods of matrix powers.
作者 段俊生
出处 《上海应用技术学院学报(自然科学版)》 2014年第2期163-166,181,共5页 Journal of Shanghai Institute of Technology: Natural Science
基金 上海市教委科研创新重点项目(14ZZ161)
关键词 加法幂等半环 坡代数 网络 半环 additively idempotent semiring incline algebra graph network semiring
  • 相关文献

参考文献10

  • 1Thomason M G.Convergence of powers of a fuzzy matrix[J].J Math Anal Appl,1977,57:476-480.
  • 2Kim K H,Roush F W.Generalized fuzzy matrices[J].Fuzzy Sets and Systems,1980,4 (3):293-315.
  • 3Li J X.An upper bound on indices of finite fuzzy relations[J].Fuzzy Sets and Systems,1992,49 (3):317-321.
  • 4Cechlarova K.On the powers of matrices in bottleneck/fuzzy algebra[J].Linear Algebra Appl,1996,246:97-111.
  • 5Tan Y.On the powers of matrices over a distributive lattice[J].Linear Algebra Appl,2001,336:1-14.
  • 6Zhang K L.On the nilpotent matrices over D01-lattice[J].Fuzzy Sets and Systems,2001,117(3):403-406.
  • 7曹志强.谈谈代数系坡[J].系统工程理论与实践,1984,4(4):1-7. 被引量:3
  • 8CaoZQ.KimK H,RoushFW.Incline algebra and applications[M].New York:John Wiley & Sons,1984.
  • 9Han S C,Li H X.Indices and periods of incline ma trices[J].Linear Algebra Appl,2004,387:143-165.
  • 10Duan J S.The transitive closure,convergence of powers and adjoint of generalized fuzzy matrices[J].Fuzzy Sets and Systems,2004,145(2):301-311.

二级参考文献2

共引文献2

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部