期刊文献+

带约束多项式权重LPV模型辨识算法 被引量:1

Identification Method for LPV Models Using Polynomial Weights with Constraints
下载PDF
导出
摘要 针对复杂工业非线性系统建模难度大、精度低等问题,基于多模型插值的变参数线性(LPV)模型辨识算法,提出双工作点变量条件下的带约束多项式权重函数结构及其参数寻优策略,以有效降低非线性系统辨识的难度并充分保证所建模型的全局稳定性.以高纯度分馏塔这一典型非线性工业过程为研究对象进行LPV模型建模与仿真,获得了较好的输出和阶跃响应曲线拟合结果,验证了LPV模型能够充分反映非线性系统的运行特性以及所提算法的有效性和实用性. In order to better handle the complex nonlinear industrial processes and improve model accuracy, this paper studied the identification algorithm for LPV ( linear parameter varying) models based on multi-model interpolation. The structure and the corresponding optimization strategy of two-scheduling-variables-based polynomial weighting function with constrains were proposed, which can effectively reduce the difficulty of nonlinear model identification and guarantee the model’s global stability. The accuracy and effectiveness of the developed LPV model were verified by simulating a typical industrial process, namely a high purity distillation column. Both the LPV model outputs and step responses fit the real process well.
作者 黄江茵
出处 《厦门理工学院学报》 2014年第3期45-50,共6页 Journal of Xiamen University of Technology
基金 厦门理工学院高层次人才引进项目(YKJ13012R) 厦门理工学院国家基金预研项目(XYK201402)
关键词 线性变参数模型 带约束多项式权重 高纯度分馏塔 LPV model polynomial weights with constraints high purity distillation column
  • 相关文献

参考文献15

  • 1BOUILLOC T, FAVIER G. Nonlinear channel modeling and identification using baseband volterra-parafac models [ J ]. Signal Processing, 2012, 92(6) : 1492-1498.
  • 2FUKUSHIMA K. Neural network model for completing occluded contours [ J]. Neural Networks, 2010, 23 (4) : 528-540.
  • 3HARNISCHMACHER G, MARQUARDT W. A muhi-variate hammerstein model for processes with input directionality [J]. Journal of Process Control, 2007, 17(6) : 539-550.
  • 4HAGENBLADA A, LJUNGA L, WILLS A. Maximum likelihood identification of wiener models [ J ]. Automatica, 2008, 44 ( 11 ) : 2697-2705.
  • 5VERDULT V, VERHAEGEN M. Subspace identification of multivariable linear parameter- varying systems [ J ]. Automatica, 2002, 38 (5) : 805-814.
  • 6ROLAND T, HEUBERGER P S C. Van den Hof P. M. J. , Asymptotically optimal orthonormal basis functions for LPV system identification [ J ]. Automatica, 2009, 45 (6) : 1359-1370.
  • 7LAURAIN V, GILSON M, TOTH R, et al. Refined instrumental variable methods for identification of LPV Box-Jenkins models [J]. Automatica, 2010, 46(6) : 959-967.
  • 8RUGH W J, SHAMMA J. Research on gain scheduling [J]. Automatica, 2000, 36(10) : 1401-1425.
  • 9HUANG J Y, JIG L, ZHU Y C. Identification and MPC control of a circulation fluidized bed boiler using an LPV model [ J]. Proceeding of the 9th International Symposium on Dynamics and Control of Process Systems, 2010, 9: 853-858.
  • 10SANTOSA P L D, AZEVEDO T P, JANKC G, et al. Leakage detection and location in gas pipelines through an LPV identification approach [ J ]. Communications in Nonlinear Science and Numerical Simulation, 2011,16 (12) : 4657-4665.

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部