期刊文献+

α-可分解的8长圈的存在性 被引量:1

The Existence of α-Resolvable Cycle Systems for Cycle Length 8
下载PDF
导出
摘要 研究α-可分解的圈长为8的圈系统的存在性问题.通过直接构造和递归构造相结合的方法,证明了α-可分解的8-CS(υ,λ)存在的必要条件也是充分的,除去υ≡4,6,12,14,15(mod 16)及v=34的可能情形外. In this paper, we discussed the existence ofα-resolvable cycle systems for cycle length 8 by using direct and recursive construction methods. It is shown that the conditions for existence ofα-resolvable 8 -CS(υ,λ) are both necessary and sufficient except for the few case whenυ≡4, 6, 12, 14, 15( mod 16) andυ = 34 .
出处 《厦门理工学院学报》 2014年第3期97-102,共6页 Journal of Xiamen University of Technology
基金 国家自然科学基金项目(11071056)
关键词 α-可分解 圈系统 圈可分组设计 α-resolvable cycle system cycle group divisible design
  • 相关文献

参考文献6

  • 1JUNGNICKEL D, MULLIN R C, VANSTONE S A. The spectrum of c~-resolvable designs with block size 3 [ J]. Discrete Math, 1991, 97: 269-271.
  • 2GVOZDJAK P. On the Oberwolfach problem for complete multigraph [J]. Discrete math, 1997, 173: 61-69.
  • 3马秀文.α-可分解的圈系统[D].石家庄:河北师范大学,2008.
  • 4刘荣辉.圈长为6的α-可分解的圈系统[D].石家庄:河北师范大学,2012.
  • 5VASIGA T M J, FURINO S, LING A C H. The spectrum of a-resolvable designs wiith block size four [ J ]. J Combin Des, 2001, 9.. 1-16.
  • 6CAO H, NIU M, TANG C. On the existence of cycle frames and almost resolvable cycle systems [ J]. Discrete Math, 2011, 311: 2220-2232.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部