期刊文献+

基于神经网络的超临界锅炉四管泄漏故障诊断 被引量:2

ANN-Based Diagnosis of Four-Tube Leakage Faults for Supercritical Boiler Unit
下载PDF
导出
摘要 四管泄漏是电站锅炉的常见故障,不仅导致非正常停炉和经济损失,严重时会危及运行人员的生命安全,深入研究四管泄漏故障规律并采用先进方法对四管泄漏故障类型和位置进行实时诊断具有重要意义;为此,借助火电机组全范围仿真系统,针对不同的协调运行方式,对某600MW超临界机组锅炉四管泄漏故障的规律进行了详细的仿真研究;在此基础上,采用神经网络与征兆缩放技术相结合的智能诊断方法,实现四管泄漏故障的实时诊断;实验结果表明:该方法对不同协调运行方式下程度不同的四管泄漏故障均可得到具有较高故障分离度的正确诊断结果,具有较好的工程实用性。 Four-tube leakage faults are the most common faults of a power plant boiler, not only resulting in abnormal boiler shutdown and economic toss, but also endangering the safety of operating personnel. It is of great significance to grasp the changing rules of four-tube leakge faults and to recognize the fault type and location real-time with advanced fault diagnosis method. With the help of a full-scope simulator, detailed fault simulation tests are carried out for the four-tube leakage faults of a 600MW supercritical boiler unit under different coordinated control modes. An intelligent fault diagnosis method, which combines artificial neural network with symptom zoom technology, is applied to realize online fault diagnosis of four-tube leakage faults of varied severity at different load points and operating modes. The fault diagnosis simualtion tests show that this method can recognize and position the four-tube leakage faults correctly with good engineering practicability.
出处 《计算机测量与控制》 北大核心 2014年第7期2024-2026,2030,共4页 Computer Measurement &Control
基金 国家自然科学基金项目(61174111)
关键词 超临界锅炉 四管泄漏 神经网络 故障诊断 仿真实验 supercritical boiler four-tube leakage artificial neural network fault diagnosis simulation tests
  • 相关文献

参考文献7

二级参考文献35

  • 1李录平.凝汽器低真空运行的原因及模糊诊断[J].汽轮机技术,1993,35(5):45-48. 被引量:32
  • 2赵文升.大型电电机组加热加热系统数学模型的研究(硕士学位论文)[M].保定:华北电力大学,2000(8)..
  • 3Sorsa T, Koivisto H, Koivo H N. Neural networks in process fault diagnosis[J]. IEEE Trans. on Systems, Man and Cybernetics, 1991, 21(4): 815-825.
  • 4Sorsa T, Koivo H N. Application of artificial neural networks in process faultdiagnosis[J]. Automatica, 1993, 29(4): 843-849.
  • 5Weerasinghe M, Barry G J, Williams David. Neural networks for fault diagnosis of a nuclear fuel processing plant at different operating points[J]. Control EngineeringPractice, 1998, 6(2): 281-289.
  • 6Ma Liangyu, Lee K Y. Fuzzy neural network approach for fault diagnosis of power plant thermal system under different operating points[C]. 2008 IEEE Power & Energy Society General Meeting (CDROM), Pittsburgh, PA, USA, 2008.
  • 7汪健,倪维斗.基于模糊神经网络的凝汽器故障诊断系统研究[J].动力工程,1997,17(1):55-59. 被引量:17
  • 8胡达,张建民,章海辉.早期检测锅炉管泄漏的应用技术[J].中国电力,1997,30(2):20-22. 被引量:7
  • 9闻新 周露 王丹力 熊晓英.MATLAB神经网络应用设计[M].北京:科学出版社,2002..
  • 10孙增圻.智能控制理论与技术[M].北京:清华大学出版社,2003.16~123.

共引文献63

同被引文献19

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部