期刊文献+

基于RBF模糊神经网络的垂直轴风力机设计 被引量:2

Research on Vertical Axis Wind Turbine Control Algorithm Based on RBF Fuzzy Neural Network
下载PDF
导出
摘要 半转结构垂直轴风力机具有优良的空气动力特性,为了进一步提高风电系统输出电能的质量,在RBF神经网络与模糊逻辑系统的函数等价条件下,探索了基于T-S模糊模型的RBF模糊神经网络控制算法,并依此设计出两叶结构半转式垂直轴风力机控制器;通过与常规PID控制算法的仿真比较,表明基于T-S模型的RBF模糊神经网络控制算法在两叶结构半转式垂直轴风力机的恒转速控制方面具有一定的优越性。 Seimi-rotary VAWT (vertical axis wind turbine) has excellent aerodynamic properties. In order to improve the quality of electricity produced by wind turbine,, the RBF fuzzy neural network was studied on the condition that the RBF neural network was equal to the function of fuzzy logic system and, twp-leaf semi-rotary VAWT controller was based on this algorithm. Compared with the conventional PID control algorithm, the simulation result shows that the RBF fuzzy neural network control algorithm based on T-S model has some superiority in the application of two-leaf semi-rotary VAWT constant revolution control.
出处 《计算机测量与控制》 北大核心 2014年第7期2237-2239,2243,共4页 Computer Measurement &Control
关键词 垂直轴风力机 T—S模糊模型 RBF模糊神经网络 VAWT T-S fuzzy models RBF fuzzy neural network
  • 相关文献

参考文献4

二级参考文献20

  • 1内蒙古风力发电考察组.欧洲风力发电考察报告[J].北方经济(内蒙),2005(3):24-26. 被引量:2
  • 2田海姣,高日,王铁龙.巨型垂直轴风力发电机组结构的动力特性分析[J].钢结构,2007,22(6):38-41. 被引量:4
  • 3李俊峰,时璟丽,施鹏飞.风力12在中国[M].化学工业出版社,2005:1-2,105.87.
  • 4U.S.Department of energy,Sandia National Laboratories and American Wind Energy Associotion.The History of the DOE program.Vertical Axis Wind Turbine.
  • 5张显双.风能的利用[M].物理世界.人民教育出版社,2004.
  • 6倪受元.风力机的类型与种类[D].风力发电讲座,7-8.
  • 7Wai R J,Hsieh K Y.Tracking control design for robot manipulator via fuzzy neural network[C].IEEE Int.Conf.on Fuzzy Systems,Honolulu,May 2002,USA.,1422-1427.
  • 8Wai R J,Chang C J.Tracking control based on neural network strategy for robot manipulator[J].Neurocomputing,2003(51):425-445.
  • 9Joo E M,ChangBoon L,Holm N K,et al.Real-time implementation of a dynamic fuzzy neural networks controller for a SCARA[J].Microprocessors and Microsystems,2002,26(9):449-461.
  • 10Castillo O,Melin P.Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach[J].Applied Soft Computing,2003(3):363-378.

共引文献87

同被引文献11

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部