期刊文献+

耳蜗结构对低频信号频散特性的影响

Influences of the Cochlear Structure on the Dispersion of Low-Frequency Signals
下载PDF
导出
摘要 耳蜗是人体最为精密的力学元器件,能处理频率从几十到几万赫兹的声信号.实验研究表明,声波进入耳蜗后,沿着基底膜传播,基底膜能够将不同频率的声信号分散到不同的位置,并为位于基底膜上的毛细胞所感知,就像一个天然的Fourier(傅里叶)滤波器.在von Békésy行波理论框架体系下,基于Manoussaki等的三维螺旋基底膜流固耦合耳蜗模型,考虑耳蜗导管高度和基底膜刚度均为纵向梯度变化,推导出基底膜声波传播的频散方程,分别分析了基底膜刚度和耳蜗导管高度对频散特性的影响.发现耳蜗内淋巴液的存在大大提高了耳蜗对低频信号的处理能力,且捕获频率随基底膜刚度和耳蜗导管高度的减小而降低,两者梯度变化在声信号调制中起协同作用.最后,以人、沙鼠和豚鼠的具体耳蜗参数为例,得到3种生物耳蜗频率-点位图,并验证了低频段模型预测的正确性,比较分析了耳蜗频散功能与生物适应性之间的关系. The cochlea is the most precise mechanical component in a human body. With frequencies from dozens to thousands of Hertz,acoustic signals can be processed by the cochlea and captured by the sensory hair cells on the basilar membrane( BM). Experimental research shows that sound waves of different frequencies are scattered at different positions along the basilar membrane as a natural Fourier filter.Based on Manoussaki's 3D fluid-solid coupling model for the spiral cochlear basilar membrane and in addition according to the longitudinal gradients of the cochlear duct height and the BM stiffness,a dispersion equation for the acoustic wave propagation along the basilar membrane was deduced. The influences of the duct height and the BM stiffness on the dispersion characteristics were analyzed. It is found that existence of the cochlear endolymph greatly increases the low-frequency signal processing ability,and the capture frequency reduces with the decreases of both the BM stiffness and the duct height. Finally,3 examples of human,gerbil and guinea pig were empirically studied for verification. 3 frequency-position diagrams corresponding to the 3 animals respectively were obtained to prove the correctness of the proposed dispersion model,and reveal the relationship between the biological adaptability and the function of cochlear dispersion. This study is not only beneficial to understanding of the cochlear function but also promising to lay a theoretical basis for the development and design of sound sensors.
出处 《应用数学和力学》 CSCD 北大核心 2014年第8期893-902,共10页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11272242 91016008)~~
关键词 耳蜗 基底膜(BM) 低频信号 频散特性 频率-点位图 cochlea basilar membrane(BM) low-frequency signal dispersion frequency-position diagram
  • 相关文献

参考文献15

  • 1von Bksy G. Experiments in Hearing[ M]. Wever E G transl. New York, Toronto, London: McGraw-Hill Bool Company, Inc, 1950.
  • 2Leveque R J, Peskin C S, Lax P D. Solution of a two-dimensional cochlea model with fluid viscosity[J]. SIAM Journal on Applied Mathematics, 1988, 48( 1 ) : 191-213.
  • 3Allen J. Two-dimensional cochlear fluid model: new results [ J]. The Journal of the Acoustical Society of America, 1977, 61(1) : 110-119.
  • 4Givelberg E, Bunn J. A comprehensive three-dimensional model of the cochlea[ J]. Journal of Computational Physics, 2003, 191(2): 377-391.
  • 5刘迎曦,李生,孙秀珍.人耳传声数值模型[J].力学学报,2008,40(1):107-113. 被引量:42
  • 6王学林,周健军,凌玲,胡于进.含主动耳蜗的人耳传声有限元模拟[J].振动与冲击,2012,31(21):41-45. 被引量:8
  • 7王学林,胡于进.蜗窗激励评价的有限元计算模型研究[J].力学学报,2012,44(3):622-630. 被引量:12
  • 8Manoussald D, Dimitriadis E, Chadwick R. Cochlea' s graded curvature effect on low fre- quency waves [ J ]. Physical Review Letters, 2006, 96 (8) : 88701.
  • 9Manoussald D, Chadwick R S, Dimitriadis E. The influence of cochlear shape on low-frequen- cy hearing[ J]. Proceedings of the National Academy of Sciences, 2008, 105(16) : 6162-6166.
  • 10Babbs C F. Quantitative reappraisal of the Helmholtz-Guyton resonance theory of frequency tuning in the cochlea[J] Journal of Biophysics, 2011, 54(6) : 1-16.

二级参考文献59

  • 1Hudde H, Weistenhofer C. A three-dimensional circuit model of the middle ear. Acustica United with Acta Acustica, 1997, 83(2): 535-549
  • 2Zwislocki J. Analysis of the middle-ear function. Part I: Input impedance. The Journal of the Acoustical Society of America, 1962, 34(9B): 1514-1523
  • 3Rabbitt RD, Holmes MH. A fibrous dynamic continuum model of the tympanic membrane. The Journal of the Acoustical Society of America, 1986, 80(6): 1716-1728
  • 4Funnell WRJ, Laszlo CA. Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am, 1978, 63(5): 1461-1467
  • 5Wada H, Metoki T. Analysis of dynamic behavior of human middle ear using a finite method. The Journal of the Acoustical Society of America, 1992, 92(6): 3157-3168
  • 6Beer H J, Bornitz M, et al. Modeling of components of the human middle ear and simulation of their dynamic behaviour. Audiology & Neuro-Otology, 1999, 4(3-4): 156-162
  • 7Takuji Koike, Hiroshi Wada, Toshimitsu Kobayashi. Modeling of the human middle ear using the finite-element method. The Journal of the Acoustical Society of Arnerica, 2002, 111(3): 1306-1317
  • 8Gan RZ, Feng B, Sun Q. Three-dimensional finite element modeling of human ear for sound transmission. Annals of Biomedical Engineering, 2004, 32(6): 847-859
  • 9Lee Chia-Fone, Chen Peir-Rong, Lee Wen-Jeng, et al. Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis. Laryngoscope, 2006, 116(5): 711-716
  • 10Kirikae I. The Structure and Function of the Middle Ear. Tokyo: University of Tokyo Press, 1960

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部