期刊文献+

n维糖酵解模型非常数稳态解的模式生成

Pattern Formation of Nonconstant Steady-State Solutions to the n-Dimensional Glycolysis Model
下载PDF
导出
摘要 研究了一类带Neumann边界条件的n维糖酵解模型.首先,以扩散系数d1为分歧参数,运用局部分歧理论分析了该模型非常数稳态解的局部结构.其次,利用全局分歧理论和LeraySchauder度理论讨论了非常数稳态解的全局存在性.最后,借助数值模拟证实了所得结论.分析结果表明n维糖酵解模型的空间模式可以生成. A glycolysis model under the Neumann boundary condition was investigated in the n-dimensional space. Based on the local bifurcation theory,the local structure of the nonconstant steady-state solution to the model was studied with diffusion coefficient d1 as the bifurcation parameter. Then,according to the global bifurcation theory and the Leray-Schauder degree theory,global existence of the nonconstant steady-state solution was discussed. Moreover,the theoretical results were confirmed through numerical simulations. It is shown that the spatial pattern can form for the glycolysis model.
出处 《应用数学和力学》 CSCD 北大核心 2014年第8期930-938,共9页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11271236) 陕西省教育厅科研计划资助项目(生化反应中糖酵解模型的动力学性质研究)(14JK1862)~~
关键词 糖酵解模型 稳态解 模式生成 全局分歧 glycolysis model steady-state solution pattern formation global bifurcation
  • 相关文献

参考文献15

  • 1Dahmlow P, Vanag V K, Mfiller S C. Effect of solvents on the pattern formation in a Belousov-Zhabotinsky reaction embedded into a microemulsion [ J]. Physical Review E, 2014, 89( 1): 010902.
  • 2Kondo S, Miura T. Reaction-diffusion model as a framework for understanding biological pat- tern formation[ J]. Science, 2010, 329(5999) : 1515-1520.
  • 3张丽,刘三阳.一类高次自催化耦合反应扩散系统的分歧和斑图[J].应用数学和力学,2007,28(9):1102-1114. 被引量:4
  • 4Turing A M. The chemical basis of morphogenesis[ J]. Philosophical Transactions of the Roy- al Society of London, Series B, Biological Sciences, 1952, 237(641) : 37-72.
  • 5Murray J D. Mathematical Biology H: Spatial Models and Biomedical Applications[ M]. 3rd ed. Berlin: Springer-Verlag, 2003.
  • 6林振山,李湘如.准三分子模型的时空结构[J].数学物理学报(A辑),1989,9(2):183-191. 被引量:3
  • 7Tyson J, Kauffman S. Control of mitosis by a continuous biochemical oscillation[ J ]. Journal of Mathematical Biology, 1975, 1(4) : 289-310.
  • 8Segel L A. Mathematical Models in Molecular and Cellular Biology [ M ]. Cambridge: Cam- bridge University Press, 1980.
  • 9Forbes L K, Holmes C A. Limit-cycle behaviour in a model chemical reaction: the cubic auto- catalator [ J ]. Journal of Engineering Mathematics, 1990, 24 (2) : 179-189.
  • 10Ashkenazi M, Othmer H G. Spatial patterns in coupled biochemical oscillators[J]. Journal of Mathematical Biology, 1978, 5(4) : 305-350.

二级参考文献29

  • 1Higgins J., A chemical mechanism for oscillations of glycolytic intermediates in yeast cells, Proc. Natl. Acad. Sci. USA, 1964, 51(6): 989-994.
  • 2Bhargava S. C., On the higgins model of glycolysis, Bull. Math. Biol., 1980, 42(6): 829-836.
  • 3Peng-R., Shi J. P., Wang M. X., On stationary pattern of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 2008, 21(7): 1471-1488.
  • 4Sel'kov E. E., Self-oscillations in glycolysis, Eur. J. Biochem., 1968, 4(1): 79-86.
  • 5Davidson F. A., Rynne B. P., A priori bounds and global existence of solutions of the steady-state Sel'kov model, Proc. Roy. Soc. Edinburgh Sect. A, 2000, 130(3): 507-516.
  • 6Peng R., Qualitative analysis of steady states to the Sel'kov model, J. Differential Equations, 2007, 241(2): 386 -398.
  • 7Ashkenazi M., Othmer H. G., Spatial patterns in coupled biochemical oscillators, J. Math. Biol., 1978, 5(4): 305-350.
  • 8Segel L. A., Mathematical Models in Molecular and Cellular Biology, Cambridge: Cambridge University Press, 1980.
  • 9Goldbeter A., Nicolis G., An allosteric enzyme model with positive feedback applied to glycolytic oscillations, Prog. Thaor. Biol., 1976, 4: 65-160.
  • 10Othmer H. G., Aldridge J. A., The effects of cell density and metabolite flux on cellular dynamics, J. Math. Biol., 1978, 5(2): 169- 200.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部