摘要
研究了一类带Neumann边界条件的n维糖酵解模型.首先,以扩散系数d1为分歧参数,运用局部分歧理论分析了该模型非常数稳态解的局部结构.其次,利用全局分歧理论和LeraySchauder度理论讨论了非常数稳态解的全局存在性.最后,借助数值模拟证实了所得结论.分析结果表明n维糖酵解模型的空间模式可以生成.
A glycolysis model under the Neumann boundary condition was investigated in the n-dimensional space. Based on the local bifurcation theory,the local structure of the nonconstant steady-state solution to the model was studied with diffusion coefficient d1 as the bifurcation parameter. Then,according to the global bifurcation theory and the Leray-Schauder degree theory,global existence of the nonconstant steady-state solution was discussed. Moreover,the theoretical results were confirmed through numerical simulations. It is shown that the spatial pattern can form for the glycolysis model.
出处
《应用数学和力学》
CSCD
北大核心
2014年第8期930-938,共9页
Applied Mathematics and Mechanics
基金
国家自然科学基金(11271236)
陕西省教育厅科研计划资助项目(生化反应中糖酵解模型的动力学性质研究)(14JK1862)~~
关键词
糖酵解模型
稳态解
模式生成
全局分歧
glycolysis model
steady-state solution
pattern formation
global bifurcation