期刊文献+

城市道路交通事故多发位置鉴别 被引量:3

Black Position Identification of Urban Road Traffic Accident
下载PDF
导出
摘要 针对现有相关鉴别法的不足,以核密度估计和计数数据模型为理论基础,GIS为技术基础,建立基于点模式和面模式的空间聚类分析模型,提出了1种基于空间聚类分析技术的城市道路事故多发位置鉴别方法,充分挖掘空间数据,实现分析结果的可视化。研究表明,空间单元标准化Z值>2.58,对应于α=0.01的显著性水平,表明该单元是1个极高值的空间聚类,为1级事故多发点;1.96<Z<2.58对应于α=0.05的显著性水平,表明该单元是1个高值的空间聚类,为2级事故多发点。 This paper proposes a new method of black position identification of urban road traffic accident by using spatial clustering analysis model based on point and plane models .The proposed method is based on the kernel density es-timation ,count data model ,and GIS technology .The proposed method can mine the spatial data and visualize the analysis results .Results from the crash data show that there are two spatial clusters of high values .The first one has the unit standardization Z value above 2 .58 ,which corresponds to the first level of accident black points .The second has the unit standardization Z value between 1 .96 and 2 .58 ,corresponding to the second level of accident black points .
作者 姜燕 刘利华
出处 《交通信息与安全》 2014年第3期32-35,52,共5页 Journal of Transport Information and Safety
基金 新疆维吾尔自治区科学技术厅计划项目(批准号:H101326001)资助
关键词 城市道路 全局聚类 核密度 空间单元 urban road global clustering kernel density spatial unit
  • 相关文献

参考文献6

二级参考文献47

  • 1刘高军,朱嬿.基于数据挖掘技术的建筑企业信用评价[J].中国矿业大学学报,2005,34(4):494-499. 被引量:21
  • 2过秀成.交通安全学[M].南京:东南大学出版社,2000..
  • 3邵春福 绿凯 秦利燕 见:蒋秉洁 李江平主编.基于GIS的道路交通事故空间结构模型研究[A].见:蒋秉洁,李江平主编.2004北京国际智能交通论坛“安全与畅通”论文集[C].北京:中国人民公安大学出版社,2004.173-179.
  • 4Han JW, Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001. 145-176.
  • 5Kaufan L, Rousseeuw PJ. Finding Groups in Data: an Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990.
  • 6Ester M, Kriegel HP, Sander J, Xu X. A density based algorithm for discovering clusters in large spatial databases with noise. In:Simoudis E, Han JW, Fayyad UM, eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland: AAAI Press, 1996. 226-231.
  • 7Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. "73-84.
  • 8Agrawal R, Gehrke J, Gunopolos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining application. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data.Seattle: ACM Press, 1998.94-105.
  • 9Alexandros N, Yannis T,Yannis M. C^2P: clustering based on closest pairs. In: Apers PMG, Atzeni P, Ceri S, Paraboschi S,Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma:Morgan Kaufmann Publishers, 2001. 331-340.
  • 10Berchtold S, Bohm C, Kriegel H-P. The pyramid-technique: towards breaking the curse of dimensionality. In: Haas LM, Tiwary A,eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 142- 153.

共引文献249

同被引文献22

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部