期刊文献+

随机因素作用下的超临界Hopf分岔附近的动力学

下载PDF
导出
摘要 本文研究了确定的和随机的INa,p+IK神经元模型中的超临界霍普夫(Hopf)分岔附近的动力学行为,随机模型中靠近Hopf分岔点的随机节律被认为是整数倍节律模式;还研究了相应于分岔点附近的随机自共振机制.结果不仅揭示了超临界Hopf分岔点附近的神经放电的统计特征和动力学机制,还给出了实用于现实神经系统中Hopf分岔的判断指标.
作者 李玉叶
出处 《赤峰学院学报(自然科学版)》 2014年第13期3-6,共4页 Journal of Chifeng University(Natural Science Edition)
基金 内蒙古自治区自然科学基金面上项目资助(2012MS0103)
  • 相关文献

参考文献10

  • 1Rose J.E., Brugge J.F., Ardertson D.D. and Hind J.E.. Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel mongkey [J]. Neurophysiol, 1967,30:769.
  • 2Douglass J.k., Wilkens L., PantazelouE., Moss F. Noise enhancement of information Transfer in crayfish mechanoreceptors by stochastic resonance [J].Nature,1993,365:337-340.
  • 3Gu H.G., Ren W., Lu Q.S., Wu S.G., Yang M.H., Chen W.J. Integer multiple spiking in neural pacemakers without external periodic stimulation[J]. Phys Lett A, 2001, 285:63-68.
  • 4古华光,任维,杨明浩,陆启韶.神经起步点产生的一种新型簇放电节律——阵发周期1节律[J].生物物理学报,2002,18(4):440-447. 被引量:9
  • 5古华光,李莉,杨明浩,刘志强,任维.实验性神经起步点产生的整数倍簇放电节律[J].生物物理学报,2003,19(1):68-72. 被引量:9
  • 6Izhikevich E. M. Dynamical Systems in Neuroscience:The Geometry of Excitability and Bursting [M]. The MIT Press, 2005.
  • 7ManneUa R., Palleschi V. Fast and precise algorithm for computer simulation of stochastic differential equations[J]. Phys Rev A,1989,40:3381-3386.
  • 8Benzi R., Sutera S., Vulpiani A. The mechanism of stochastic resonance[J]. Phys A, 1981, 14:453-457.
  • 9Hu G., Ditzinger T., Ning C.Z. Stochastic resonance without external periodic force [J].Phys Rev Lett, 1993, 71:807-810.
  • 10Pikovsky A.S., Kurth J. Coherence Resonance in a Noise-Driven Excitable System [J]. Phys Rev Lett, 1997, 78:775-778.

二级参考文献21

  • 1Fan YS, Chay TR. Generation of periodic and chaotic bursting in an excitable cell model[J]. Biol Cybern, 1994,71:417~431.
  • 2Plant RE. Bifurcation and resonance on a model for bursting nerve cells[J]. J Math Boil, 1981,11:15~32.
  • 3Del Negro CA, Hsiao CH, Chandler SH, et al. Evidence for a novel bursting mechanism in rodent trigeminal neurons[J].Biophys J, 1998,75:174~182.
  • 4Chay TR, Fan YS, Lee YS. Bursting, spiking, chaos, fractals,and universality in biological rhythms[J]. Int J Bifure Chaos,1995,5:595~635
  • 5Baltanas JP, Casado JM. Bursting behavior of the FitzHugh-Nagumo neuron model subject to quasi-monochromatic noise[J]. Phys D, 1998,122:231~240.
  • 6Wu SG, Ren W, He KF, et al. Burst and coherence in Hindmarsh-Rose model induced by additive noise[J]. Phys Lett A,2001,279:347~354.
  • 7Longtin A. Autonomous stochastic resonance in bursting neurons[J]. Phys Rev E, 1997,55:868~877.
  • 8Hindmarsh JL, Rose RM. A model of the nerve impulse using two first-order differential equations[J]. Nature, 1982,296:162~164.
  • 9Hindmarsh JL, Rose RM. A model of the neuronal bursting using three coupled first-order differential equations[J]. Proc R Soc Lond, 1984,B322:87~102.
  • 10Holden AV, Fan YS. From simple to simple bursting oscillatory behavior via chaos in the Rose-Hindmarsh model for neuronal activity[J]. Chaos Solitons Fractals, 1992,2:221~236.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部