期刊文献+

基于单波束测距声呐的水下机器人避障仿真研究 被引量:2

Simulation Research on Obstacle Avoidance of Autonomous Underwater Vehicle Based on Single Beam Ranging Sonar
下载PDF
导出
摘要 针对多波束声纳体积大,成本高的局限,利用单波束声呐的探测波束依次旋转,依次获取自主式水下航行器(autonomous underwater vehicle,AUV)前方的左、中、右3个区域的障碍物距离信息.通过设计合适的环境障碍状态与有效的避障行为集合,并利用强化学习选择适合AUV自主避障的障碍状态-行为组合.仿真实验表明,根据单波束传感器提供的障碍物信息,通过强化学习获得的状态-动作组合,可以保证AUV躲避前方90°开角的障碍物,达到安全航行的要求. On one hand, the single-beam sonar acquires the obstacle distance information, which includes three areas (left, center and right) in front of autonomous underwater vehicle by rotating its ranging beam, for the large volume and high cost limitations of the multi-beam sonar.On the other hand,appropriate environmental states and effective obstacles avoidance behaviors are designed,and the proper state-action combinations for obstacle avoidance are selected by the reinforcement learning.Simulation results show that, according to the obstacle information provided by the single-beam sonar and the state-action combination obtained through reinforcement learning, AUV can guarantee to avoid obstacles in front of the opening angle of 90 degrees and meet requirements safe navigation.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期484-489,共6页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(60975084,61165016)
关键词 自主式水下航行器 避障 单波束声呐 强化学习 autonomous underwater vehicle(AUV) obstacle avoidance single beam sonar reinforcement learning
  • 相关文献

参考文献10

  • 1Qiao J F, Hou Z J, Ruan X G. Application of reinforcement learning based on neural network to dynamic obstacle avoid- ance[C] // Proceedings of the 2008 IEEE International Con- ference on Information and Automation. Changsha, China: IEEE, 2008 : 784-788.
  • 2Sayyaadi H, Ura T,Fujii T.Collision avoidance controller for AUV system using stochastic real reinforcement learning method[C]//Proceedings of the 39th SICE An nual Conference. Iizuka, Japan : IEEE, 2000 : 165-170.
  • 3Jia Q L,Li G W.Formation control and obstacle avoidance algorithm of multiple autonomous underwater vehicles (auvs) based on potential function and behavior rules[C] //Automation and Logistics, 2007 IEEE International Conference on.Jinan, China : IEEE, 2007 : 569-573.
  • 4Khanmohammadi S,Alizadeh G,Poormahmood M.Design of a fuzzy controller for underwater vehicles to avoidmoving obstacles [ C] // Fuzzy Systems Conference. London, England : IEEE, 2007 : 1-6.
  • 5Zhang M, Ura T. Motion optimization of autonomous un- derwater vehicle by genetic algorithm [J].Journal of the Society of Naval Architects of Japan, 1997,182:491-497.
  • 6McPhail S, Furlong M, Pebody M. Low-altitude terrain following and collision avoidance in a flight-class autono- mous underwater vehicle[J].Journal of Engineering for the Maritime Environment,2010,224(4):279-292.
  • 7Huvenne V A I,Blondel P, Henriet J P.Textural analyses of sidescan sonar imagery from two mound provinces in the Porcupine Seabight [J]. Marine Geol, 2002, 189: 323-341.
  • 8Petillot Y,Ruiz I T, Lane D. Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar[J].IEEE Journal of Oceanic Engineering, 2001,26 (2) :240-251.
  • 9沈志忠,曹志强,谭民,王硕.基于增强式学习的仿生机器鱼避障控制[J].高技术通讯,2006,16(12):1253-1258. 被引量:3
  • 10Balch T.Behavioral diversity in learning robot teams[D]. Atlanta: Georgia Institute of Technology, 1998.

二级参考文献11

  • 1彭之春,庞永杰.机器鱼的运动仿真方法[J].系统仿真学报,2004,16(12):2643-2646. 被引量:5
  • 2桑海泉,王硕,谭民,张志刚.基于红外传感器的仿生机器鱼自主避障控制[J].系统仿真学报,2005,17(6):1400-1404. 被引量:19
  • 3Colgate J E,Lynch K M.Mechanics and control of swimming:a review.IEEE Journal of Oceanic Engineering,2004,29(3):660-673
  • 4Triantafyllou M,Triantafyllou G S.An efficient swimming machine.Scientific American,1995,272(3):64-70
  • 5Barrett D,Grosenbaugh M,Triantafyllou M.The optimal control of a flexible hull robotic undersea vehicle propelled by an oscillating foil.In:Proceedings of the IEEE Symposium on Autonomous Underwater Vehicle Technology,1996:1-9
  • 6Morgansen K A,Duindam V,Mason R J,et al.Nonlinear control methods for planar carangiform robot fish locomotion.In:Proceedings of the 2001 IEEE International Conference on Robotics and Automation,2001:427-434
  • 7Kaelbling L P,Littman M L,Moore A W.Reinforcement learning:a survey.Journal of Artificial Intelligence Research,1996,4:237-285
  • 8Watkins C J C H,Dayan P.Q-learning.Machine Learning,1992,8(3):279-292
  • 9Tucker B.Behavioral diversity in learning robot teams:[Ph.D.thesis].Atlanta:Georgia Institute of Technology,1998
  • 10刘军考,陈在礼,陈维山,王力刚.水下机器人新型仿鱼鳍推进器[J].机器人,2000,22(5):427-432. 被引量:35

共引文献2

同被引文献22

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部