期刊文献+

基于特征优选模拟电路故障诊断方法 被引量:2

Method for Fault Diagnosis of Analog Circuits Based on Feature Selection
下载PDF
导出
摘要 传统基于最小二乘支持向量机模拟电路故障诊断方法都是使用单一的特征向量组合训练支持向量机所有二分类器,然而实际上每个二分类器对不同的特征向量组合有不同的分类精度。因此,提出了基于马氏距离的粒子群优化算法,为最小二乘支持向量机所有二分类器优选出近最优的特征向量组合。然后,将近最优特征向量组合用于训练和测试该支持向量机。最后把该方法应用于模拟电路早期故障诊断,实验结果表明,基于近最优特征向量组合的诊断精度要高于单一特征向量组合的诊断精度。 Traditionally, multi-fault diagnosis of analog circuits based on least squares support vector machine (LSSVM) usually uses a single feature vector combination to train all binary LSSVM classifiers. However, in fact, each binary LSSVM classifier has different classification accuracy for different feature vector combinations. Therefore, the Mahalanobis distance (MD) based on particle swarm optimization (PSO) is proposed to select a near-optimal feature vector combination for each binary classifier. Then, the near-optimal feature vector combinations are used to train and test LSSVM for diagnostics of the incipient faults in analog circuits. The experimental results show that the accuracy using the near-optimal feature vector combinations is higher than the accuracy using a single vector combination.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第4期557-561,共5页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61071029 60934002 61201009 61271035)
关键词 故障诊断 特征优选 最小二乘支持向量机 马氏距离 粒子群优化算法 faults diagnosis feature selection least squares support vector machine Mahalanobis distance particle swarm optimization
  • 相关文献

参考文献10

  • 1龙兵,高旭,刘震,王厚军.基于Visio控件多信号模型分层建模方法[J].电子科技大学学报,2012,41(2):259-264. 被引量:10
  • 2SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
  • 3CUI J, WANG Y R. A novel approach of analog circuit fault diagnosis using support vector machines classifier[J]. Measurement, 2011, 44(1): 281-289.
  • 4LONG Bing, TIAN Shu-lin, WANG Hou-jun. Least squares support vector machine based analog circuit fault diagnosis using wavelet transform as preprocessor[C]// International Conference on Communications, Circuits and Systems (ICCCAS). Fujian: [s.n.], 2008: 1026-1029.
  • 5LONG Bing, TIAN Shu-lin, WANG Hou-jun. Diagnostics of filtered analog circuits with tolerance based on LS-SVM using frequency features[J]. Journal of Electronic Testing: Theory and Application, 2012, 28 (3): 291-300.
  • 6YUAN L F, HE Y, HUANG J Y, et al. A new neural-network-based fault diagnosis approach for analog circuits by using kurtosis and entropy as a preprocessor[J]. IEEE Trans on Instrumentation and Measurement, 2010, 59(3): 586-595.
  • 7MAHALANOBIS P C. On the generalized distance in statistics[C]//Proceedings of the National Institute of Science of India. Calcutta, India: [s.n.], 1936, 2(1): 49-55.
  • 8KENNEDY J, EBERHART R C. Particle swarm optimization[C]//International Conference on Neural Networks (ICNN). Perth, WA: [s.n.], 1995: 1942-1948.
  • 9YANG C L, TIAN S L, LONG B. Methods of handling the tolerance and test-point selection problem for analog-circuit fault diagnosis[J]. IEEE Transon Instrumentation and Measurement, 2011, 60(1): 176-185.
  • 10XU L J, HUANG J G; WANG H J, et al. A novel method for the diagnosis of the incipient faults in analog circuits based on LDA and HMM[J]. Circuit, Systems, and Signal Processing, 2010, 29(4): 577-600.

二级参考文献7

共引文献9

同被引文献18

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部