期刊文献+

融合社会信任关系的改进推荐系统 被引量:6

IMPROVED RECOMMENDATION SYSTEM BASED ON SOCIAL TRUST RELATION
下载PDF
导出
摘要 推荐系统已经得到了广泛的研究和应用,但是大多数推荐系统中仍存在一些导致系统推荐质量低下的不足:用户-信息项矩阵的大规模性和数据稀疏性,假设所有的用户都是互相独立的,该假设忽略了用户之间的联系。为了提高推荐系统模型的准确性,提出一种新型的概率因子分析方法。该方法对社交网络图进行挖掘,并将挖掘出的信任关系应用到推荐系统中,从而把用户朋友的喜好与用户的兴趣融合在一起,用于提高推荐质量。理论分析和实验结果表明,该方法复杂度是线性的,相对于传统方法表现出了很大的优越性,适合应用于大规模数据处理。 Recommendation system has been widely studied and applied, but most of the recommendation systems still have shortcomings : enormous scale and sparsity of user-information item matrix, assuming all the users are independent but overlooking the links between them, these lead to the degradation of system's recommendation quality. In order to improve the accuracy of recommendation system model, we pres- ent a novel probabilistic factor analysis method. The method mines the social network graph, and applies the mined trust relationship to rec- ommendation system, thus integrates the preferences of user's friends with the interests of users for improving the recommendation quality. Theoretical analysis and experimental results indicate that the method is linear complexity, and demonstrates a significant superiority in com- parison to traditional methods, and is suitable for large-scale data processing.
作者 周璐璐
出处 《计算机应用与软件》 CSCD 北大核心 2014年第7期31-35,共5页 Computer Applications and Software
关键词 推荐系统 社交网络 信任关系 矩阵分解 Recommendation system Social network Trust relationship Matrix factorisation
  • 相关文献

参考文献6

二级参考文献144

  • 1谭琳,杨艳萍,尹刚,陈越洲.一种基于推荐的分布式信任模型[J].计算机工程,2005,31(3):57-59. 被引量:6
  • 2干志勤,曾国荪.网格环境下的基于行为的信任评估模型[J].计算机应用与软件,2005,22(2):62-64. 被引量:14
  • 3刘玉龙,曹元大.分布网络环境主观信任模型研究[J].北京理工大学学报,2005,25(6):504-508. 被引量:19
  • 4陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 5Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 6Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 7Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 8Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 9Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 10Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html

共引文献824

同被引文献46

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部