期刊文献+

面向图书馆关联数据的语义链接构建研究 被引量:6

Research on Library Linked Data-Oriented Semantic Link Construction
下载PDF
导出
摘要 语义链接构建原则包括链接来源确定、链接对象评价与链接属性选择,而链接类型则分为概念间的词汇型链接与实体间的关系型链接。基于此,图书馆可利用SPARQL查询从目标数据集中选择满足链接要求的术语变量,或通过基于本体映射的相似度计算在概念间构建词汇型链接。另一方面,关系型链接构建可利用SPARQL查询寻找与馆藏存在语义相似性的实体并判断其语义关系,或利用字符串相似度匹配对资源文本特征属性进行精确匹配,从而实现图书馆与外部关联数据集的链接构建与资源共享。 The principles of semantic link construction include link source confirmation,link target evaluation and link attribute selection, while the types of semantic link can be divided into vocabulary link and relational link. Based on this, library is able to use SPARQL requirement to select term variables which meet the requirement of link construction from target datasets,or construct vocabulary links between heterogeneous concepts by means of similarity calculation based on the term mapping. On the other hand,relational link construction can also use SPARQL requirement to search the entity objects which are similar to collection and judge their semantic relation,or use the string similarity matching to match the text characteristic attributes of linked data resources,thus realize the link construction and resource sharing between library and external linked datasets.
作者 游毅
机构地区 广州大学图书馆
出处 《图书与情报》 CSSCI 北大核心 2014年第3期74-78,96,共6页 Library & Information
基金 国家社会科学基金青年项目"馆藏资源元数据的语义描述及关联网络构建研究"(项目编号:11CTQ002)研究成果之一
关键词 关联数据 语义链接 链接构建 信息聚合 linked data semantic link link construction information integration
  • 相关文献

参考文献9

  • 1Euzenat J,Shvaiko P. Ontology matching [EB/OL]. [2013 -11 -20]. http://homes.cs.washington. edu/hois.pdf.
  • 2Scharffe F,Fensel D. Correspondence patterns for ontology alignment [A]. Knowledge Engineering: Practice and Patterns[M ]. Springer Berlin Heidelberg,2008: 83-92.
  • 3Anhai D,Jayant M,et al. Learning to map between ontologies on the semantic web[A]. Proceeding of lhh International WorldWide Web Conference[C].2002.
  • 4Rodriguez A. Determining semantic similarity among entity classes from different ontologies [J]. Knowledge and Data, 2003,37 (02) : 24-31.
  • 5Doan A H,Madhavan J,et al. Learning to map between ontologies on the semantic web [A]. Proceedings of the 11th international conference on World Wide Web[C ]. ACM, 2002 : 662-673.
  • 6Sekine S,Sudo K,et al. Statistical matching of two ontologies[A]. Proceedings of ACL SIGLEX99 Workshop: Standardizing kexical Resources[C]. ACM, 1999: 134-141.
  • 7Arasu A,Ganti V,et al. Efficient exact set-similarity joins[A]. Proceedings of the 32nd international conferen ce on Very large data bases [ C ].VLDB Endowment, 2006: 918-929.
  • 8Bhattacharya I. Collective entity resolution in relational data [ J ]. IEEE Data Engineer, 2006,23 (2) : 4-12.
  • 9Hausenblas M,Halb W. Interlinking of resources with semantics [A].Poster at the 5th European Semantic Web Conference [ C ]. W3C, 2008 : 234-245.

同被引文献157

引证文献6

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部