期刊文献+

二阶周期边值问题的广义Green函数和解的存在性

Generalized Green function and existence of solution for second-order periodic boundary value problem
原文传递
导出
摘要 周期边值问题是非线性分析中的一个重要问题.作者借助广义Green函数,研究了二阶周期边值问题{u′′(t)+λu(t)=f(t,u(t)),0<t<1,u(0)=u(1),u′(0)=u′(1),的广义Green函数和其可解性,其中λ为其对应齐次问题的特征值,f:[0,1]×R→R连续. Periodic bounduy value problems is an important topic in nonlinear analysis.In this paper,existences of both solution and generalized Green function are studied for the following second-order periodic boundary value problems:{u′′(t)+λu(t)=f(t,u(t)),0t1,u(0)=u(1),u′(0)=u′(1),whereλis eigenvalue of the corresponding homogeneous problem,f:[0,1]×R→Ris continuous.
作者 岳蔓 韩晓玲
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期649-652,共4页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金项目(11101335 11126296) 甘肃省教育厅基金项目(1101-02) 兰州市科技局基金项目(2011-2-72)
关键词 周期边值问题 广义Green函数 可解性 Periodic boundary value problems Generalized Green function Existence of solution
  • 相关文献

参考文献10

  • 1Yao Q. Positive solutions of nonliear second-order periodic boundary value problems [J]. Appl Math Lett, 2007, 20(5): 583.
  • 2李永祥.二阶非线性常微分方程的正周期解[J].数学学报(中文版),2002,45(3):481-488. 被引量:45
  • 3Li F, Liang Z. Existence of positive periodic solu- tion to nonliear second order differential equations [J]. Appl Math Lett, 2005, 18(11): 1256.
  • 4Ma R. Bifurcation from infinity and multiple solu- tions for periodic boundary value problems [J]. Nonlinear Analysis, 2000, 42(1) : 27.
  • 5Ma R, Xu J, Han X. Global structure of positive solutions for superlinear second-order periodic boundary value problems[J]. Appl Math Comput, 2012, 218(10): 5982.
  • 6Torres P J. Existence of one-signed periodic solu- tions of some second-order differential equations via a Krasnoselskii fixed point theorem[J]. Diff Equat, 2003, 190(2): 643.
  • 7Liu Z, Li F. Multiple positive solutions of nonlinear two-point boundary value problems[J]. Appl Math Anal, 1996, 203(3): 610.
  • 8Henderson J, Wang H. Positive solutions for non- linear eigenvalue problems [J]. Appl Math Anal, 1997, 208(1): 252.
  • 9Yao Q. Existence multiplicity and infinite solvability of positive solutions to a nonlinear fourth-order peri- odic boundary value problem[J]. Nonlinear Anal, 2005, 63(2): 237.
  • 10Zhang Z, Wang J. On existence and multiplicity of positive solutions to periodic boundary value prob- lems for singular nonlinear second order differential equation[J]. Appl Math Anal, 2003, 281(1): 99.

二级参考文献15

  • 1Leela S., Monotone method for second order periodic boundary value problems, Nonlinear Anal., 1983, 7:349-355.
  • 2Nieto J. J., Nonlinear second-order peroidic boundary value problems, J. Math, Anal. Appl., 1988, 130:22-29.
  • 3Cabada A., Nieto J. J., A generation of the monotone iterative technique for nonlinear second-order periodicboundary value problems, J. Math. Anal. Appl., 1990, 151: 181-189.
  • 4Cabada A., The method of lower and upper solutions for second, third, forth, and higher order boundaryvalue problens, J. Math. Anal. Appl., 1994, 185: 302-320.
  • 5Gossez J. P., Pmari P., Periodic solutions of a second order ordinary differential equation: anecesary andsufficient condition for nonresonance, J. Diff. Equs., 1991, 94: 67-82.
  • 6Omari P., Villari G., Zandin F., Periodic solutions of lienard equation with one-sided growth restrictions, J.Diff. Equs., 1987, 67: 278-293.
  • 7Ge Weigao, On the existence of harmonic solutions of lienard system, Nonlinear Anal., 1991, 16(2): 183-190.
  • 8Mawhin J., Willem M., Multiple solutions of the periodic boundary value problem for some forced pendulumtype equations, J. Diff. Equs., 1984, 52: 264-287.
  • 9Zelati V. C., Periodic solutions of dynamical systems with bounded potential, J. Diff. Equs., 1987, 67:400-413.
  • 10Lassoued L., Periodic solutions of a second order superquadratic system with a change of sign in potential,J. Diff. Equs., 1991, 93: 1-18.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部