摘要
设R是一个环.一个右R-模N叫做M-(m,n)-内射的,如果每一个从Rm的n-生成子模到N的右R-模单同态都能扩展到Rm到N的R-模同态.如果RR是M-(m,n)-内射的,则称R是右M-(m,n)-内射的.M-(m,n)-内射性是MP-内射性的推广.本文首先给出了一个右R-模N是M-(m,n)-内射模的刻画,其次通过MP-内射性给出了N是M-(m,n)-内射的一个充分条件,最后给出了可裂零扩张是M-(m,n)-内射的一个性质,从而推广了MP-内射性的性质.
Let Rbe a ring.A right R-module Nis called M-(m,n)-injective,if every right R-monomorphism from an n-generated submodule of Rmto Nextends to one fromRmto N.If RRis right M-(m,n)-injective,then Ris called a right M-(m,n)-injective ring.It is obvious that M-(m,n)-injectivity is a generalization of MP-injectivity.In this paper,firsrtly,the authors give some characterizations on M-(m,n)-injectivity;secondly,it gives a sufficient condition that Nis M-(m,n)-injective by MP-injectivity;finally,the authors give a property on the split null extension which is M-(m,n)-injectivite.Some results generalize the properties on MP-injectivity.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第4期684-688,共5页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金青年基金(11101084)