期刊文献+

关于M-(m,n)-内射性

On M-(m,n)-injectivity
原文传递
导出
摘要 设R是一个环.一个右R-模N叫做M-(m,n)-内射的,如果每一个从Rm的n-生成子模到N的右R-模单同态都能扩展到Rm到N的R-模同态.如果RR是M-(m,n)-内射的,则称R是右M-(m,n)-内射的.M-(m,n)-内射性是MP-内射性的推广.本文首先给出了一个右R-模N是M-(m,n)-内射模的刻画,其次通过MP-内射性给出了N是M-(m,n)-内射的一个充分条件,最后给出了可裂零扩张是M-(m,n)-内射的一个性质,从而推广了MP-内射性的性质. Let Rbe a ring.A right R-module Nis called M-(m,n)-injective,if every right R-monomorphism from an n-generated submodule of Rmto Nextends to one fromRmto N.If RRis right M-(m,n)-injective,then Ris called a right M-(m,n)-injective ring.It is obvious that M-(m,n)-injectivity is a generalization of MP-injectivity.In this paper,firsrtly,the authors give some characterizations on M-(m,n)-injectivity;secondly,it gives a sufficient condition that Nis M-(m,n)-injective by MP-injectivity;finally,the authors give a property on the split null extension which is M-(m,n)-injectivite.Some results generalize the properties on MP-injectivity.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期684-688,共5页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金青年基金(11101084)
关键词 M-(m n)-内射性 MP-内射性 可裂零扩张 M- (m,n) -injectivity MP-injectivity Split null extension
  • 相关文献

参考文献8

  • 1Dinh H Q. A note on pseudo-injective modules[J]. Comm Algebra, 2005, 33: 361.
  • 2Singh S. On pseudo injective modules[J]. Riv Mat Univ Parma, 1968, 2(9): 59.
  • 3Tiwary A K, Pandeya B M. Pseudo projective and pseudo injective modules [J]. Indian J Pure Appl Math, 1978, 9: 941.
  • 4Samruam B, Hai H D, Sanh N V. On pseudo-P-in- jectivity[J]. Southeast Asian Bull Math, 2011, 35 (1) : 21.
  • 5Samruam B, Hai H D, Sanh N V. A General form of pseudo p-Injeetivity [J]. Southeast Asian Bull of Math, 2011, 35(6): 927.
  • 6ChenJL, DingN Q, LiY L, etal. On(m,n)-in- jeetivity of Modules[J]. Comm Algebra, 2001, 29 (12) : 5589.
  • 7Zhu Z M, MP-injective rings and MGP-injective rings [J]. Indian J PureApplMath, 2010, 41(5), 627.
  • 8杜先能,赵春娥.Pseudo-Injective Modules and Principally Pseudo-Injective Modules[J].Journal of Mathematical Research and Exposition,2007,27(2):223-228. 被引量:4

二级参考文献5

  • 1ANDERSON F W,FULLER K R.Rings and Categories of Modules[M].Springer-Verlag,New York,1974.
  • 2GARCIA J L.Properties of direct summands of modules[J].Comm.Algebra,1989,17:73-92.
  • 3KHURI S M.P-injective endomorphism rings[J].Comm.Algebra,1996,24:3759-3769.
  • 4NICHOLSON W K,PARK J K,YOUSIF M F.Principally quasi-injective modules[J].Comm.Algebra,1999,27:1683-1693.
  • 5TONG Wen-ting.On pseudo-projective modules[J].J.Math.Res.Exposition,1996,16(3):355-358.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部