期刊文献+

对两类RSA变体的小解密指数攻击 被引量:3

Cryptanalysis of two RSA variants with short secret exponent
原文传递
导出
摘要 Sun,Yang和Laih利用素因子p,q间的不平衡性提出了三类RSA变体以抵抗Wiener给出的连分式攻击和Boneh-Durfee的小解密指数攻击.本文通过构造一个新的双变元模方程及系数格,利用格基约化求小根的方法得到解密指数的界与加密指数和较小素因子之间的渐进关系,有效攻击了其中的两类RSA变体. Sun, Yang and Laih proposed three RSA variants to resist all attacks including Wiener's continued fraction attack and Boneh-Durfee's short secret exponent attack using the unbalanced primes p and q. In this paper, we construct a new bivariate modular equation and coefficient lattice to obtain the asymptotic relationship between the bound of secret exponent and the prime. The research implies two out of the three variants could be attacked efficiently.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期689-695,共7页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(61003291) 数学工程与先进计算国家重点实验室开放课题(2013A03 2013A10)
关键词 RSA变体 小解密指数攻击 格基约化 双变元模方程 RSA variants Short secret exponent attack Lattice reduction Bivariate modular equation
  • 相关文献

参考文献18

  • 1Rivest R L, Shamir A , Adleman L. A method for obtaining digital signatures and public-key crypto- systems [J]. Communications of the ACM, 1978, 21(2):120.
  • 2Boneh D. Twenty years of attacks on the RSA cryp- tosystem [J]. Notices of the AMS, 1999,46 (2) 203.
  • 3Wiener M J. Cryptanalysis of short !RSA secret ex- ponents [J]. IEEE Transactions on Information Theory, 1990, 36(3): 553.
  • 4Coppersmith D. Small solutions to polynomial equa- tions and low exponent vulnerabilities [J]. Journal of Cryptology, 1997, 10(4) :223.
  • 5Boneh D, Durfee G. Cryptanalysis of RSA with pri rate key d less than NO. 292 [J]. IEEE tions on Information Theory, 2000, 46(4): 1339.
  • 6Sarkar S, Maitra S, Sarkar S. RSA cryptanalysis with increased hounds on the secret exponent using less lattice dimension [R]. IACR Eprint archive: Report, 2008.
  • 7Sun H M, Yang W C, Laih C S. On the design of RSA with short secret exponent [C]// Advanced in Cryptology-ASIACRYPT' 99. Berlin.. Springer, 1999.
  • 8Durfee G, Nguyen P Q. Cryptanalysis of the RSA Schemes with Short Secret Exponent from Asiacrypt ' 99 [C]//Advanced in Cryptology-ASIACRYPT 2000, Berlin: Springer, 2000.
  • 9Grotschel M, Lovdsz L, Schrijver A. Geometric al- gorithm and combinatorial optimization [M]. Ber- lin: Springer, 1993.
  • 10Lenstra A K, Lenstra H W, Lovasz L. Factoring polynomials with rational coefficients [J]. Math- ematiche Annalen, 1982, 261(4): 515.

二级参考文献3

共引文献5

同被引文献13

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部