期刊文献+

医疗数据发布中多敏感属性隐私保护算法 被引量:4

Privacy protecting algorithm for multiple sensitive properties in medical data publishing
原文传递
导出
摘要 医疗数据发布时对患者隐私保护是实际应用中要解决的关键问题之一,作为医疗机构,希望发布的医疗数据可以在保证保护个人隐私的同时,使数据尽可能不失真,使发布的数据具有较高的可用性.文中提出了一种新的医疗数据发布中多敏感属性隐私保护(AHPK-匿名)算法.算法在现有K-匿名算法的基础上考虑不同的准标识属性对敏感属性的效用,利用层次分析法计算准标识属性对敏感属性的效用权值,再根据权值对准标识属性进行概化处理.理论分析和实验结果表明,AHPK-匿名算法能较好地保护个人隐私,能有效保持发布后数据的可用性. The protection of patients' privacy in medical data publishing is one of the key problems to be solved in practical applications. As medical institutions, medical data need to protect the privacy of personal data as far as possible not distortion, which let the released data with high usability. This paper proposes a new privacy protecting algorithm for multiple sensitive properties in medical data publishing i.e. the AHPK-Anonymous algorithm, which considers the effect of different Quasi-Identifier upon sen- sible properties based on the K-Anonymous algorithm, calculate the effect power of Quasi-Identifier upon sensible properties using analytic hierarchy process, and do the hiding process to Quasi-Identifier according to the power value. Both theoretical analysis and experimental results on real datasets show that the AHPK-Anonymous Algorithm can protect individual's privacy better and keep the availability of da- ta effectively after publishing.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期731-737,共7页 Journal of Sichuan University(Natural Science Edition)
基金 国家科技重大专项(2012ZX10004-901001) 国家自然科学基金项目(11102124) 教育部新世纪优秀人才支持计划项目(NCET-10-0604) 四川省科技支撑计划项目(2013SZ0002) 国家物联网专项项目(工信部科[2012]583号)
关键词 K-匿名 隐私保护 效用 概化 层次分析法 K-Anonymity Privacy protection Utility Generalization AHP
  • 相关文献

参考文献13

  • 1Sweeney L. k-anonymity: a model for protecting privacy[J]. Int J Uncertain Fuzz, 2002, 10 (5): 557.
  • 2Samarati P, Sweeney L. Protecting privacy when disclosing information..kIAnonymity and its enforce- ment through generalization and suppression [R/ OL]. (1998-04-20). [2013-08-23] . http..//www. cse. iitb. ac. in/dbms/Data/Courses/CS632/2007/ Papers/kanon-samarati. pdf.
  • 3Sweeney L. Achieving k-anonymity privacy protec- tion using generalization and suppression[J]. Int J Uncertain Fuzz, 2002, 10(5), 571.
  • 4Samarati P, Sweeney L. Generalizing data to pro- vide anonymity when disclosing information [C]// Proceedings of the 17th ACM SIGMOD SIGACT- SIGART Symposium on the Principles of Database Systems. Seattle, WA, USA:ACM Press, 1998.
  • 5Terrovitis M, Mamoulis N, Kalnis P. Anonymity in unstructured data[R]. Hong Kong: Hong Kong U- niversity, 2008.
  • 6张鹏,童云海,唐世渭,杨冬青,马秀莉.一种有效的隐私保护关联规则挖掘方法[J].软件学报,2006,17(8):1764-1774. 被引量:53
  • 7Sweeney L. Guaranteeing anonymity when sharing medical data, the Datafly system[C]. Washington, DC.. Hanley & Belfus, Inc, 1997: 51.
  • 8LeFevre K, DeWitt D J, Ramakrishnan R. Incogni- to: efficient full-domain k-anonymity [ C]//ACM SIGMOD International Conference on Management of Data. Baltimore, USA.. ACM Press, 2005.
  • 9LeFevre K, DeWitt D J, Ramakrishnan R. Mondri- an multidimensional K-Anonymity [C]. Washing- ton, USA: IEEE Computer Society, 2006.
  • 10吕品,钟珞,于文兵,何成万.MA-Datafly:一种支持多属性泛化的k-匿名方法[J].计算机工程与应用,2013,49(4):138-140. 被引量:6

二级参考文献39

  • 1Verykios VS,Bertino E,Fovino IN,Provenza LP,Saygin Y,Theodoridis Y.State-of-the-Art in privacy preserving data mining.SIGMOD Record,2004,33(1):50-57.
  • 2Han J,Kamber M.Data Mining:Concepts and Techniques.Beijing:China Machine Press,2001.
  • 3Agrawal R,Srikant R.Privacy-Preserving data mining.In:Weidong C,Jeffrey F,eds.Proc.of the ACM SIGMOD Conf.on Management of Data.Dallas:ACM Press,2000.439-450.
  • 4Rizvi SJ,Haritsa JR.Maintaining data privacy in association rule mining.In:Bernstein PA,Ioannidis YE,Ramakrishnan R,Papadias D,eds.Proc.of the 28th Int'l Conf.on Very Large Data Bases.Hong Kong:Morgan Kaufmann Publishers,2002.682-693.
  • 5Agrawal S,Krishnan V,Haritsa JR.On addressing efficiency concerns in privacy-preserving mining.In:Lee YJ,Li JZ,Whang KY,Lee D,eds.Proc.of the 9th Int'l Conf.on Database Systems for Advanced Applications.LNCS 2973,Jeju Island:Springer-Verlag,2004.113-124.
  • 6Evfimievski A.Randomization in privacy preserving data mining.SIGKDD Explorations,2002,4(2):43-48.
  • 7Evfimievski A,Srikant R,Agrawal R,Gehrke J.Privacy preserving mining of association rules.In:Hand D,Keim D,Ng R,eds.Proc.of the 8th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.Edmonton:ACM Press,2002.217-228.
  • 8Saygin Y,Verykios VS,Clifton C.Using unknowns to prevent discovery of association rules.ACM SIGMOD Record,2001,30(4):45-54.
  • 9Oliveira SRM,Zaiane OR.Privacy preserving frequent itemset mining.In:Clifton C,EstivillCastro V,eds.Proc.of the IEEE Int'l Conf.on Data Mining Workshop on Privacy,Security and Data Mining.Maebashi:IEEE Computer Society,2002.43-54.
  • 10Kantarcioglu M,Clifton C.Privacy-Preserving distributed mining of association rules on horizontally partitioned data.IEEE Trans.on Knowledge and Data Engineering,2004,16(9):1026-1037.

共引文献64

同被引文献52

  • 1邢小云.美国医疗信息隐私保护立法介绍与启示[J].护理学杂志(外科版),2007,22(5):72-74. 被引量:24
  • 2中华人民共和国国家质量监督检验检疫总局.GB/T22239-2008信息安全技术信息系统安全等级保护基本要求[S].2008.
  • 3孟浩,周立,何建坤.自然科学基金投入与科技论文产出的协整分析[J].科学学研究,2007,25(6):1147-1150. 被引量:38
  • 4Rodrigues JJ, de la Torre I, Gonzalo F, et al. Analysis of the Secu- rity and Privacy Requirements of Cloud- Based Electronic Health Records Systems[J]. J Meal Intemet Res, 2013, 15(8) :e186.
  • 5United States Department of Heahh and Human Services. Health In- surance Portability and Accountability Act of 1996 [ S/OL ]. ( 1996 - 08 - 21 ) [ 2015 - 07 - 28 ]. http ://aspe. hhs. gov/admnsimp/ p1104191, htm#261.
  • 6陆昊.在医疗机构中开展信息安全等级保护测评实践和探讨[J].信息网络安全,2012(s1):44-46.
  • 7Le XH, Doll T, Barbosu M ,et al. Evaluation of an Enhanced Role -Based Access Control Model to Manage Information Access in Collaborative Processes for a Statewide Clinical Education Program [ J]. J Biomed Inform,2014,50 : 184-195.
  • 8Kamateri E, Kalampokis E, Tambouris E, et al. The Linked Med- ical Data Access Control Framework[ Jl. J Biomed Inform,2014, 50:213-225.
  • 9Haas S, Wohlgemuth S, Echizen I, et al. Aspects of Privacy for Electronic Health Records [ J ]. Int J Med Inform, 2011, 80 ( 2 ) : e26-31.
  • 10Loukides G, Liagouris J, Gkoulalas-Divanis A, et al. Disassoci- ation for Electronic Health Record Privacy [ J ]. J Biomed Inform, 2014, 50:46-61.

引证文献4

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部