期刊文献+

高阻值纳米薄膜材料的热电特性测量 被引量:1

Measurement of thermoelectric characteristics of high resistance nano films
下载PDF
导出
摘要 为了实现高阻值纳米薄膜材料的热电系数测量,搭建了一套塞贝克系数测量系统。研究了该系统的温控精度和温差生成机制并测量了高阻值条件下微弱电压。首先,建立了高真空度和带有多重电磁屏蔽的真空测试环境;然后,设计了高稳定度温差控制平台,以便为测试样品提供可控温差;同时根据高阻条件下的微弱电压的检测要求,消除了检测通道的漏电流和分布电容的影响。最后,提出了一种循环温差的测量方法,用于有效去除分布电容引起的塞贝克电压长期漂移。采用该方法对高阻值的有机半导体材料进行了塞贝克系数的测定,结果显示:阻值高达7×1012Ω的有机薄膜材料的塞贝克系数的测量精密度<2%,温度控制精度为±0.001K。得到的结果表明,该系统能够实现对样品阻值高达1012Ω的纳米薄膜材料的塞贝克系数的测量。 To measure the thermoelectric characteristics of a high resistance nano film,a Seebeck coefficient measurement apparatus was designed and built.The temperature control accuracy and temperature difference generation mechanism were investigated and the weak voltage signals under a high resistance condition were measured.Firstly,a vacuum environment with an ultra-high vacuum degree and an electric-magnetic shield was setup.Then,a temperature difference control stage was installed inside the vacuum chamber to generate the accurate temperature difference between the two ends of the test sample.Meanwhile,according to the weak voltage detection requirements under the condition of high resistance,the influences of channel leakage current and distributed capacitance were eliminated.Finally,a cyclic temperature gradient generation technique and a corresponding algorithm were proposed to eliminate the negative effects of the long term drift of Seebeck voltage and the Seebeck coefficients of high resistance organic semiconductor materials were measured.Experimental results on a high resistance nano film with resistance over 7×1012Ω indicate that the measuringaccuracy of the measurement apparatus is less than 2%,and temperature control accuracy is about ±0.001K.It means that the apparatus can measure the Seebeck coefficient of nano material with a resistance over 1012Ω.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2014年第7期1794-1799,共6页 Optics and Precision Engineering
基金 中国科学院研究资助项目(No.KGCX-EW)
关键词 热电材料 纳米薄膜材料 塞贝克系数测量 电压测量 温度控制 nano-film material thermoelectric material Seebeck coefficient measurement voltage measurement temperature control
  • 相关文献

参考文献12

  • 1PERMSTICH K,ROSSNER B, BATLOGG B. Field effect modulated Seebeck coefficient in organic semieonductors[J]. Nature Materials, 2008, 7 (4) : 321 325.
  • 2贾磊,胡芃,陈则韶.温差发电的热力过程研究及材料的塞贝克系数测定[J].中国工程科学,2005,7(12):31-34. 被引量:18
  • 3YOSHINO H, PAPAVASSILIOU G, MURATA K. Low dimensional organic conductors as thermoelec-tric materials [J]. Journal of Thermal Analysis and Calorimetry, 2008,92 : 457-460.
  • 4HAAS S, TAKAHASHI Y, TAKIMIYA K, et al.. High-performance dinaphtho-thieno-thiophene single crystal field-effect transistors[J]. Applied Physics Letters,2009,95: 022111- 3.
  • 5SUN J, YEH M L, JUNG B, et al.. Simuhaneous increase in Seebeck coefficient and conductivity in a doped poly (alkylthiophene) blend with defined density of states[J]. Macromolecules, 2010, 43:2897-2903.
  • 6TRAKALO M, MOORE C, LESLIE J,et al.. Apparatus for measuring Seebeck coefficients of high - resistance semiconducting films [J]. Rez, Sci Instrum,1984,55; 754-760.
  • 7NAKAMURA M, HOSHI A, SAKAI M, et al.. Evaluation of thermopower of organic materials toward flexible thermoelectric power generators [C]. Mater. Res. Soc. Syrup. Proc. ,2010,1197, D09-07.
  • 8Keithley Instruments, Inc. , Low level measurements handbook [M]. 6th Edition, 2004.
  • 9Texas Instruments, LMPT721,3 femtoampere input bias current precision amplifier [EB/OL]. http:// www. ti. com/product/lmp7721.
  • 10何智兵,黄勇刚,张溪文,赵高凌,杜丕一,韩高荣.酞菁铜的性能和应用研究进展[J].材料导报,2000,14(10):51-55. 被引量:12

二级参考文献14

共引文献28

同被引文献18

  • 1WONG S Y, CHEN Y C, Droplet-based elect- rospray ionization mass spectrometry for qualitative and quantitative analysis [J]. J. Mass. Spectrom, 2014, 49(5): 432-436.
  • 2BENNETT R V, CLEAVES H J, DAVIS J M, et al: Desorption electrospray ionization imaging mass spectrometry as a tool for investigating model prebiotic reactions on mineral surfaces [J]. Anal. Chem. Analytical chem., 2013, 85 (3): 1276- 1279.
  • 3REDDY M, SUBBA R G, CHOWDARI B. Metal oxides and oxysalts as anode materials for Li ion batteries [J]. Chem. Rev., 2013, 113(7): 5364- 5457.
  • 4JU J, YAMAGATA Y, HIGUCHI T. Thin-film fabrication method for organic light-emitting diodes using electrospray deposition [J]. Adv. Mater. , 2009, 21(43): 4343-4347.
  • 5ZHAO X Y, WANG X, LIM S L, et al: Enhancement of the performance of organic solar ceils by eIectrospray deposition with optimal solvent system [J]. Sol. Energ. Mat. Sol. C., 2014, 121: 119-125.
  • 6HAN Y L, WANG S, ZHANG X, et al: Engineering physical microenvironment for stem cell based regenerative medicine [J]. Drug Discov. Today, 2014, 19(6): 763-773.
  • 7PAN C, CHEN Y, HSIEH C, et al: Ultrasonic ses.rtg device with ZnO piezoelectric nanorods by selectively electrospraying method [ J ]. Sensor Actuat. A-Phys. , 2014, 216(9): 318-327.
  • 8BHATNAGAR P. Multiplexed electrospray deposition for protein microarray with micromachined silicon device [J]. Appl. Phys. Lett., 2007, 91(1): 014102-014102-014103.
  • 9OH H, KIM K, KIM S. Characterization of deposition patterns produced by twin-nozzle electrospray[J]. J. AerosolSci. 2008, 39(9): 801- 813.
  • 10DENG W, KLEMIC J F, LI X, et al: Increase of electrospray throughput using multiplexed microfahricated sources for the scalable generation of monodisperse droplets [J]. J. Aerosol Sci., 2006, 37(6): 696-714.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部