期刊文献+

弯扭耦合影响的MEMS扭转谐振器件中的热弹性阻尼 被引量:4

Thermoelastic damping in MEMS torsion resonators in consideration of coupling effect between torsion and bending
下载PDF
导出
摘要 热弹性阻尼作为一种基本的能量耗散机理,对高质量因数的MEMS谐振器件有着重要的影响。因为纯扭转振动不产生热弹性能量耗散,所以过去很少有文献涉及到扭转器件中热弹性阻尼。但是,静电驱动的扭转谐振器件中通常存在弯扭耦合现象,其中弯曲振动的部分不可避免的产生热弹性阻尼。针对具有弯扭耦合的MEMS扭转谐振器件,给出一种热弹性阻尼解析模型。首先考虑弯扭耦合效应,利用MEMS扭转谐振器件的静态平衡方程和动力学方程,得到线性振动方程,然后根据热传导方程和LR理论推导出热弹性阻尼的解析模型。将解析模型与FEM仿真结果及实验数据比较,证实了理论的可行性并揭示了热弹性阻尼在内部耗散中的重要性。通过对解析模型特性的研究,分析了谐振器件几何尺寸对热弹性阻尼的影响关系。 An analytical model of thermoelastic damping was presented for micromechanical resonators considering the coupling effect between bending and torsion.The static and dynamic equations were built to solve structure deflections in coupled motion of torsion and bending.The bending component of the coupled motion causes thermoelastic damping, however,both torsion and bending motions were taken into consideration to calculate the energy stored,which is different from other models without consideration of torsion component.A simple analytical expression of thermoelastic damping was derived by using the heat conduction equation and LR theory.The presented model was validated by comparing its results with the finite-element method solutions.The thermoelastic damping obtained by the presented model was compared to the measured internal friction of a single paddle oscillator.It is found that thermoelastic damping contributes significantly to internal friction in the case of high-order modes.The effects of structure dimensions on thermoelastic damping were explored.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第13期35-39,105,共6页 Journal of Vibration and Shock
基金 国家自然科学基金项目(51075072)
关键词 MEMS 热弹性阻尼 弯扭耦合 谐振器件 MEMS thermoelastic damping coupling resonator
  • 相关文献

参考文献13

  • 1李普,方玉明.考虑直流偏置电压影响的弹性悬臂微梁挤压膜阻尼新模型[J].振动工程学报,2009,22(2):123-127. 被引量:2
  • 2Zener C. Internal friction in solids. Ⅰ. Theory of internal friction in reeds [ J ]. Physical Review, 1937, 52 (3) : 230 - 235.
  • 3Zener C. Internal friction in solids Ⅱ. General theory of thermoelastic internal friction [ J ]. Physical Review, 1938, 53(1) : 90 -99.
  • 4Lifshitz R, Roukes M L. Thennoelastic damping in micro-and nanomechanical systems [ J ]. Physical Review B, 2000, 61 (8) : 5600 -5609.
  • 5Prabhakar S, Vengallatore S. Theory of thermoelastic damping in micromechanical resonators with two-dimensional heat conduction [ J ]. Journal of Microelectromeehanical Systems, 2008, 17(2) : 494-502.
  • 6Chandorkar S A, Candler R N, Duwel A, et al. Multimode thermoelastic dissipation [ J ]. Journal of Applied Physics, 2009,105 (4) : 043505 - 1 - 12.
  • 7Liu X, Morse S F, Vignola J F, et al. On the modes and loss mechanisms of a high Q mechanical oscillator [ J ]. Applied Physics Letters, 2001 78 : 1346 - 1348.
  • 8Houston B H, Photiadis D M, Vignola J F, et al. Loss due to transverse thermoelastic currents in microscale resonators [ J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004, 370:407 -411.
  • 9Liu X, Haucke H, Vignola J F, et al. Understanding the internal friction of a silicon micro-mechanical oscillator [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2009, 521 (22) : 389 - 392.
  • 10Houston B H, Photiadis D M, Marcus M H, et al. Thermoelastic loss in microscale oscillators [ J ]. Applied Physics Letters, 2002, 80 : 1300 - 1302.

二级参考文献15

  • 1Nayfeh A H, Younis M I. A new approach of the modeling and simulation of flexible microstructures under the effect of squeeze-film damping[J]. Journal of Micromechanics and Microengineering, 2004, 14: 170-181.
  • 2Bao M, Yang H. Squeeze film air damping in MEMS [J]. Sensors and Actuators A, 2007,136:3-27.
  • 3Chen C S, Kuo W J. Squeeze and viscous damping in microelectrostatic comb drives[J]. Sensors and Actuators A, 2003,107:193--203.
  • 4Yang Y J, Gretillat M A, Senturia S D. Effect of air damping on the dynamics of nonuniform deformations of microstructures [A]. International Conference on Solid-State Sensors and Actuators[C]. Chicago,IL, USA, 1997:1 093-1 096.
  • 5Li G, Aluru N R. Linear, nonlinear and mixedregime analysis of electrostatic MEMS[J]. Sensors and Actuators A, 2001,91:278-291.
  • 6Gabbay L D, Mehner J E, Senturia S D. Computeraided generation of nonlinear reduced-order dynamic macromodels-Ⅰ: non-stress-stiffened case[J]. Journal of Microelectromechanical Systems, 2000, 9 (2): 262-269.
  • 7Mehner J E, Gabbay L D, Senturia S D. Computeraided generation of nonlinear reduced-order dynamic macromodels-Ⅱ: stress-stiffened case[J]. Journal of Microelectromechanical Systems, 2000, 9 (2): 270- 278.
  • 8Hung E S, Senturia S D. Generating efficient dynamical models for microelectromechanieal systems from a few finite element simulations runs[J]. Journal of Microelectromeehanical Systems, 1999,8 (2) : 280-289.
  • 9Zhang C G, Xu G, Jiang Q. Characterization of the squeeze film damping effect on the quality factor of a microbeam resonator[J]. Journal of Micromechanics and Microengineering, 2004,14:1 302-1 306.
  • 10Darling R B, Hivick C, Xu J. Compact analytical modeling of squeeze film damping with arbitary venting conditions using a Green's function approach[J]. Sensors and Actuators A, 1998,70: 32-41.

共引文献1

同被引文献12

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部