期刊文献+

考虑基底层阻尼的自由阻尼结构损耗因子修正公式 被引量:5

Modified loss factor formulas for UD structures with consideration of base layer's damping
下载PDF
导出
摘要 针对基底层阻尼不可忽略的自由阻尼结构,考虑基底层的拉伸变形,根据变形能理论和复刚度理论分别推导得到修正的损耗因子公式。而后利用ANSYS软件建立自由阻尼矩形板的实体模型并进行谐响应分析,分别通过变形能法和输入率法得到结构损耗因子的数值解。仿真对比表明,变形能法和复刚度法两种损耗因子修正公式的计算结果相吻合,结构损耗因子的两种有限元数值解均与修正公式的解析解相一致。研究表明,损耗因子修正公式是正确的,可用于一般基底层的自由阻尼类结构的损耗因子计算。 For unconstrained damped (UD) structures whose base layer's damping can not be neglected, revised loss factor formulas were derived based on the strain energy method (SEM) and complex stiffness method (CSM) with the base layer's shear deformation considered. Solid models of UD rectangle plates were developed with ANSYS and based on the model, a harmonic analysis was done. The numerical solutions of structural loss factors were obtained by using the input power method and SEM. The simulation results show that analytical solutions by SEM and CSM are coincident and are in good agreement with the numerical solutions by two FEA methods. The research demonstrates the revised loss factor formulas are correct and benefitial to improve the prediction of UD structures' damping characteristics.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第13期204-209,共6页 Journal of Vibration and Shock
关键词 自由阻尼 变形能法 复刚度法 损耗因子 unconstrained damped strain energy method complex stiffness method loss factor
  • 相关文献

参考文献13

  • 1Oberst H, Frankenfeld K. Uberdie dampfung derbiegeschwingunge diinner bleche dutch festhaftende blue [J]. Akustisehe Beihefte, 1952, 2(4) : 181 - 194.
  • 2Kerwin E M. Damping of flexural waves by a constrained visco-elastic layer [ J ]. Journal of the Acoustical Society of America, 1959, 31 : 952 -962.
  • 3Ross D, Ungar E E, Kerwin E M. Damping of plate flexural vibrations by means of visco-elastic laminae structural damping [ J ]. American Society of Mechanical Engineers, 1959 : 49 - 87.
  • 4Ungar E E. Loss factors of viscoelastically damped beam structures [ J ]. Journal of the Acoustical Society of Amenrica, 1962, 34(8) : 1082 - 1089.
  • 5Ungar E E, Kervwin E M. Loss factors of viscoelastic systems in terms of energy concept [ J ]. Journal of the Acoustical Society of Amenrica, 1962, 34(7) : 954 -958.
  • 6Zang Xian-guo, Yu De-jie, Yao Ling-yun, et al. Optimaization of thickness distribution of unconstrained damping layer based on mode shapes [ J ]. Composite Structures, 2006, 74:63 - 69.
  • 7Sainsbury M G, Masti R S. Vibration damping of cylindrical shells using strain energy based distribution of an add-on viscoelastic treatment [ J ]. Finite Elements in Analysis and Design, 2007, 43 : 175 - 193.
  • 8Lepoittevin G, Kress G. Optimization of segmented constrained layer damping with mathematical programming using strain energy analysis and modal data [ J ]. Materials and Design, 2010, 21:14 -24.
  • 9Fan Gen-lian, Li Zhu-qiang, Zhang Di, et al. Damping capacity of BaTiO3/A1 composites fabricated by hot extrusion [ J ]. Transactions of Nonferrous Metals Society of China, 2012. 22:2512 - 2516.
  • 10臧献国,于德介,姚凌云,严若磊.基于模态振型的自由阻尼层厚度分布优化[J].中国机械工程,2010,21(5):515-518. 被引量:8

二级参考文献65

  • 1刘楚明,纪仁峰,周海涛,陈明安.镁及镁合金阻尼特性的研究进展[J].中国有色金属学报,2005,15(9):1319-1325. 被引量:58
  • 2Liang X H,Liu Z Q,Zhu P. Acoustic Analysis of Damping Structure with Response Surface Method [J]. Applied Acoustics,2007,68(9) : 1036-1053.
  • 3Zheng H,Cai C,Tan X M. Optimization of Partial Constrained Layer Damping Treatment for Vibrational Energy Minimization of Vibrating Beams[J]. Computers & Structures,2004,82(29):2493-2507.
  • 4Yi C C,Shyh C H. An Optimal Placement of CLD Treatment for Vibration Suppression of Plates[J]. International Journal of Mechanical Sciences, 2002, 44(8) : 1801-1821.
  • 5Zheng H,Cai C,Pau G S H,et al. Minimizing Vibration Response of Cylindrical Shells through Layout Optimization of Passive Constrained Layer Damping Treatments [J].Journal of Sound and Vibration, 2005,279 (3) : 739-756.
  • 6Magnus A. Optimal Position and Shape of Applied Damping Material[J].Journal of Sound and Vibration,2008,310(4) :947-965.
  • 7Johnson C D,Kienholz D A. Finite Element Predication of Damping in Structures with Constrained Layers[J]. AIAA Journal, 1982, 120 (9): 1284- 1290.
  • 8Lumsdaine A. Shape Optimization of Unconstrained Viscoelastic Layers Using Continuum Finite Element [J].Journal of Sound and Vibration, 1998,216 (1):29-52.
  • 9Schultz A B, Tsai S W. Dynamic moduli and damping ratio in fibier-reinforced eomposites[J]. J Composite Materials, 1968, 2: 368-379.
  • 10Hashin Z. Complex moduli of viscoelastic composites: I General theory and application to particulate composites[J]. Int J Solids and Struct, 1970, 6: 539-552.

共引文献32

同被引文献58

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部