摘要
针对加热炉多变量、非线性、强耦合、参数摄动及带时滞等特点,研究了一种基于新型解耦网络和模糊PID控制的系统结构,其中新型解耦网络由BP神经网络和信号加权合成器构成。详细分析了新型解耦网络的学习算法,并设计了模糊PID控制算法。以多温区加热炉为例,在Matlab/Simulink平台上进行了编程和仿真实验,结果表明:在加热炉发生大幅度参数摄动时,系统具有良好的解耦能力和动、静态控制性能。
In view of the heating furnace with characteristics of the multivariable, nonlinear, strong coupling, parameter perturbations and time delay, etc. , a system structure based on a new decoupling network and fuzzy control was researched, in which, the new decoupling network consists of BP neural network and weighted signal synthesizer. Having new decoupling network learning algorithm analyzed and the fuzzy PID control algorithm designed and then simulated in Matlab/Simulink show that the system has good decoupling ability and dynamic and static control performance when the furnace' s parameter has great perturbation.
出处
《化工自动化及仪表》
CAS
2014年第1期5-9,共5页
Control and Instruments in Chemical Industry
基金
国家自然科学基金项目"分布参数切换系统控制理论及其应用研究"(60974022)
合肥工业大学企业委托项目"山东临沂步进式加热炉工项目自动控制系统"(105-432683/11-037)
关键词
多温区加热炉
新型解耦网络
模糊PID控制
参数摄动
multi-zone furnace, new decoupling network, fuzzy PID control, parameter perturbation