期刊文献+

基于低成本MEMS-INS的车辆变道判别方法

Identification method of vehicle lane changes based on low-cost MEMS-INS
下载PDF
导出
摘要 针对传统车辆变道判别与预测方法的不足,提出一种基于低成本MEMS-INS的车辆变道判别与预测方法。利用车载低成本MEMS-INS和轮速传感器获取的纵向速度、加速度与横摆角速度信息,建立两级卡尔曼滤波器估计道路曲率,在此基础上,将所估计出的道路曲率信息作为观测量,利用交互多模型算法对车辆是否变道进行判别和预测,同时作为附带的效果,能够准确估计出车辆的航向角。实车试验结果表明,车辆变道识别率达到100%,航向角估计误差小于2%,延时小于1 s,具有成本低、精度高、延时短,环境适应力强的优点,克服了传统方法的不足,满足车辆碰撞预警系统的需要。 To overcome the shortcomings of traditional vehicle lane changes identification and prediction methods, a novel identification and prediction method of vehicle lane-change based on low-cost MEMS-INS is proposed. The speed, acceleration and yaw rate from MEMS-INS and wheel speed sensor are taken as the observed information of Kalman filter. By two-level Kalman filter recursion algorithm, the road curvature parameters are acquired. Then the road curvature parameters are considered as observed information, and the interactive multiple model method is employed for predicting lane changes. As an additional effect, the heading angle is estimated with high precision. The real vehicle tests demonstrate that the identification rate of lane changes is 100%, the estimation error of heading angle is less than 2%, and the latency times is less than 1 s. The proposed method has such advantages as low cost, high precision, environmental adaptability and very short latency times, which overcomes the shortcomings of traditional methods and meets the acquirements of vehicle collision warning system.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2014年第1期67-73,共7页 Journal of Chinese Inertial Technology
基金 国家自然科学基金资助项目(61273236) 江苏省自然科学基金资助项目(BK2010239) 教育部博士点基金资助项目(200802861061)
关键词 车辆碰撞预警 车辆变道 交互多模型 低成本MEMS-INS vehicle collision warning vehicle lane changes interactive multiple model low-cost MEMS-INS
  • 相关文献

参考文献10

  • 1Lee K,Peng H.Evaluation of automotive forward collision warning and collision avoidance algorithms[J].Vehicle System Dynamics,2005,10(43):735-751.
  • 2Chang T H,Hsu C S,Wang C,Yang L K.Onboard measurement and warning module for irregular vehicle behavior[J].IEEE Transactions on Intelligent Transpor-tation Systems,2008,9(3):501-513.
  • 3李旭,张为公.基于视觉的车道偏离报警系统的研究[J].仪器仪表学报,2008,29(7):1554-1558. 被引量:21
  • 4Hsiao P Y,Yeh C W,Huang S S.A portable vision-based real-time lane departure warning system:Day and night[J].IEEE Transactions on Vehicular Technology,2009,58(4):2089-2094.
  • 5Enache N M,Mammar S,Netto M.Driver steering assistance for lane-departure avoidance based on hybrid automata and composite Lyapunov function[J].IEEE Transactions on Intelligent Transportation Systems,2010,11(1):28-39.
  • 6Joshua M C,David M B.A low-cost solution for an integrated multisensor lane departure warning system[J].IEEE Transactions on Intelligent Transportation Systems,2009,10(1):47-39.
  • 7Rafael T M,Miguel A Z.IMM-based lane-change prediction in highways with low-cost GPS/INS[J].IEEE Transactions on Intelligent Transportation Systems,2009,10(1):180-185.
  • 8Rafael T M,Miguel A Z.Collision avoidance support in roads with lateral and longitudinal maneuver prediction by fusing GPS/IMU and digital maps[J].Transportation Research Part C,2010,18:611-625.
  • 9赵琳,王小旭,丁继成,曹伟.组合导航系统非线性滤波算法综述[J].中国惯性技术学报,2009,17(1):46-52. 被引量:74
  • 10李旭,宋翔,张国胜,于家河,张为公.基于改进卡尔曼滤波的汽车路试制动性能检测方法[J].中国惯性技术学报,2011,19(6):760-764. 被引量:3

二级参考文献45

  • 1卓宗奎,张开东,吴美平.基于Kalman滤波的GPS载波相位信息融合技术[J].中国惯性技术学报,2006,14(2):51-55. 被引量:2
  • 2Mook D J, Junkins J L. Minimum model error estimation for poorly modeled dynamic systems[J]. Journal of Guidance, Control, and Dynamics, 1988, 11(3) : 256 - 261.
  • 3LU P. Optimal predictive control of continuous nonlinear systems[J]. Int. J. Control, 1995,62(3) : 633-649.
  • 4Crassidis J L, Markley F L. Predictive filtering for nonlinear systems[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(3): 566-572.
  • 5Gordon N, Salmond D. Novel approach to non-linear and non-Gaussian Bayesian state estimation[J]. Proc of Institute Electric Engineering, 1993, 140(2):107-113.
  • 6Hammersley J M, Morton K W. Poor man's Monte Carlo[J]. J of the Royal Statistical Society B, 1954,16(1) : 23-38,
  • 7Handschin J E. Monte Carlo techniques for prediction and filtering of nonlinear stochastic processes[J]. Automatica, 1970, 6(3) : 555-563.
  • 8Gustafsson F, Ahlqvist S, Forssell U, Persson N. Sensor fusion for accurate computation of yaw rate and absolute velocity[C]// SAE 2001-01-1064. Detroit, 2001.
  • 9Hall P. A Bayesian approach to map-aided vehicle positioning[D]. Master Thesis LiTH-ISY EX-3104, Dept of Elec. Eng. Linkoping University, Linkoping, Sweden, 2001.
  • 10Bergman N. Recursive Bayesian estimation: Navigation and tracking applications[D]. Dissertation No.579, Linkoping university, Sweden, 1999.

共引文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部