期刊文献+

改进式背景差分算法研究 被引量:2

Research and application of improved background difference algorithm
下载PDF
导出
摘要 该文提出一种改进式背景差分算法,并应用于监控系统中。针对人流量较少的监控情况,提出一种基于计算机视觉的嵌入式监控系统解决方案,其以DSP DM642为核心处理芯片,可对3路视频视角同时处理。系统利用动态权值的改进式背景差分算法对视频流进行实时监控,若发现异常事件,则自动存储一段时间的视频数据,并利用H.264压缩后保存至外存中以供事后取证。由于监控算法巧妙,普通的SD卡即可替代传统的硬盘,系统精简,使用方便。试验表明:该系统灵敏度可调,非常适用于外景和内景的库房监控。 In this work, a kind of improved background difference algorithm is put forward and applied in the monitoring system. A novel embedded monitoring system based on computer vision is presented to build simple and intelligent monitoring platform for less population flow. DSP DM642 is used as the core processing chip, which can process three video views at the same time. The improved background difference method based on dynamic weight is utilized to perform real-time monitor to the video. When the accident is discovered, the system would capture a section of video automatically, then H.264 compression algorithm is used to compress the video data and the video data is saved in the external memory as evidence. Thanks to ingenious surveillance algorithm, the traditional hard disk can be replaced by the SD card. Furthermore, the monitoring system is a simple and easy process. The experimental results show that system sensitivity is adiustable, and this system is suitable for out-door and in-door warehouse monitoring.
出处 《中国测试》 CAS 北大核心 2014年第2期1-4,共4页 China Measurement & Test
基金 福建省教育厅A类项目(JA13237) 国家自然科学基金青年基金项目(51105321) 厦门市科技计划项目(3502Z20113037)
关键词 DSP芯片 视频监控 背景差分法 动态权值 digital signal processor (DSP) video monitoring background image difference dynamic weight
  • 相关文献

参考文献9

二级参考文献31

  • 1徐杰,施鹏飞.基于相位一致与区域生长的自然彩色图像分割[J].电子学报,2004,32(7):1203-1205. 被引量:12
  • 2陈凤东,洪炳镕.基于动态阈值背景差分算法的目标检测方法[J].哈尔滨工业大学学报,2005,37(7):883-884. 被引量:43
  • 3朱明旱,罗大庸.基于帧间差分背景模型的运动物体检测与跟踪[J].计算机测量与控制,2006,14(8):1004-1006. 被引量:34
  • 4Maadi A E, Maldague X. Outdoor infrared video surveillance:A novel dynamic technique for the subtraction of a changing background of IR images [ J ]. Infrared Physics & Technology, 2007, 49(3 ) :261 -265.
  • 5POWER P W, SCHOONEES J A. Understanding Background Mixture Models for Foreground Segmentation [J]. Image and Vision Computing, 2002(11):267-271.
  • 6SIMON D, VINOD C, SRIDHA S. An Adaptive Optical Flow Technique for Person Tracking Systems[J]. Pattern Recognition Letters, 2007,28 (10) : 12321239.
  • 7STAUFFER C, GRIMSON W E L. Adaptive Background Mixture Models for Real-time Tracking [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, Colorado.
  • 8Meier T, Ngun K N. Video Segmentation for Content Based Coding [J]. IEEE Trans. on Circuits and Systems for Video Technology, 1999, 9(8):1190-1203.
  • 9Gupt S. Masound O. Martin RFK, etal. Detection and classification for vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(1):37-47.
  • 10Cucchiara R, Grana C, Piccardi Metal, Statistic and knowledge-based moving object detection in traffic Sciences[A].Proceedings of the 3rd IEEE Conference on Intelligent Transportation System [C]. Dearborn, Indiana, USA: IEEE Computer Society Press.2000: 27-32.

共引文献155

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部