期刊文献+

无人水面艇目标图像自适应分割算法 被引量:3

Image adaptive segmentation algorithm for unmanned surface vehicle targets
下载PDF
导出
摘要 针对水面目标与海天背景对比度变化大、景深差异明显的特点,提出一种改进的自适应Mean-Shift图像分割算法.首先通过估计参考点领域灰度值分布,自适应地得到空间域带宽,然后结合叶斯准则,自适应计算空间窗内灰度域带宽,实现目标与背景的自适应分割.分别抽取水面艇视频图像中,目标远、近距离以及清晰对比度不同的视频帧进行仿真测试,与传统分割算法对比研究,结果表明该算法可以有效实现水面目标图像分割. Considering the large contrast changing of surface targets and sea-sky background and the obvious difference of field depth, an improved image segmentation algorithm based on self-adaptive Mean-Shift is proposed. Spatial bandwidths are adaptively computed according to the estimation of gray distribution around the reference point; then the gray-level bandwidths are adaptively computed with a novel Bayesian theory in the corresponding windows;and finally adaptive segmentation is obtained. In the experiment, both the close and distant target frames, as well as target frames of different contrast, are extracted respectively from the surface vehicle video sequence. Compared with the traditional segmentation algorithm, experimental results prove that the proposed algorithm can effectively complete segmentation of surface target images.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2014年第7期53-59,共7页 Journal of Harbin Institute of Technology
基金 国家自然科学基金青年基金资助项目(51109047) 国家留学基金委留学基金资助项目(2011307358) 黑龙江省博士后基金资助项目(Ibhq10140)
关键词 目标分割 水面艇 自适应Mean-Shift 带宽 target segmentation surface vehicle adaptive Mean-Shift bandwidth
  • 相关文献

参考文献3

二级参考文献40

  • 1林世毅,苏广川,陈东,韩晓广.基于小波变换和数学形态学的边缘检测法[J].仪器仪表学报,2004,25(z1):685-687. 被引量:24
  • 2陶文兵,刘李漫,田金文,柳健.采用递归门限分析的红外目标分割[J].光电工程,2004,31(10):46-49. 被引量:8
  • 3胡应添,徐守时,黄戈祥,吴秀清.SAR图像中海上舰船目标自动检测新方法[J].遥感技术与应用,2004,19(6):461-465. 被引量:6
  • 4李言俊,丁德锋.基于灰度和局部熵迭代的红外目标分割算法[J].红外技术,2006,28(11):677-680. 被引量:3
  • 5WANG Zhi-jun, DJEMEL Z. A comparative analysis of image fusion methods[ J]. IEEE Trans on Geoscience and Remote Sensing, 2005,43( 6 ) : 1391-1402.
  • 6PASTINA D, SPINA C. Muhi-feature based automatic recognition of ship targets in ISAR[ J]. Radar, Sonar & Navigation, IET,2009,3 (4) :406-423.
  • 7NAIR D, AGGARWAL J K. Recognition of targets by parts in second generation forward looking infrared images [ J]. Image and Vision Computing,2000,18 ( 11 ) :849-964.
  • 8MALLAT S, ZHONG S. Characterization of signals from rnultiscale ed- ges[ J]. IEEE Trans on Pattern Analysis and Machine Intelli- gence,1992,14(7) :710-731.
  • 9LI Y, WU R, XING M. Inverse synthetic aperture radar imaging of ship target with complex motion[ J]. Radar, Sonar & Navigation, IET, 2008,2(6) :395-403.
  • 10GAMBARDELLA A, NUNBZIATA F, MIGLIACCIO M. A physical full-resolution SAR ship detection filter[ J]. IEEE Geoscience and Remote Sensing Letters,2008,5 (4) :760-763.

共引文献94

同被引文献28

  • 1吴琦颖,李翠华.用于海上感兴趣区域实时分割的近似算法[J].厦门大学学报(自然科学版),2007,46(1):33-37. 被引量:9
  • 2ZABIDI M M A,MUSTAPA J,MOKJI M M,et al.Embedded vision systems for ship recognition[C]//Proceedings of TENCON 2009,IEEE Region 10 International Conference.Los Alamitos,CA,USA:IEEE Computer Society,2009:1-5.
  • 3ZHU Changren,ZHOU Hui,WANG Runsheng,et al.A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(9):3446-3456.
  • 4VELLA F.Digital image stabilization by adaptive block motion vectors filtering[J].IEEE Transactions on Consumer Electronics,2002,48(3):796-801.
  • 5MA Z,WEN J,LIANGX.Video image clarity algorithm research of USV visual system under the sea fog[M]// Advances in Swarm Intelligence.Heidelberg,Germany:Springer,2013:436-444.
  • 6CHENG Y Z.Mean shift,mode seeking,and clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
  • 7FLUSSER J,SUK T.Pattern recognition by affine moment invariants[J].Pattern Recognition,1993,1 (26):167-174.
  • 8张国英,王娜娜,张润生,马兵胜.基于主成分分析的BP神经网络在岩性识别中的应用[J].北京石油化工学院学报,2008,16(3):43-46. 被引量:29
  • 9苑丽红,付丽,杨勇,苗静.灰度共生矩阵提取纹理特征的实验结果分析[J].计算机应用,2009,29(4):1018-1021. 被引量:88
  • 10钟建华,齐乐华,李妙玲,赵志龙,李贺军.利用人工神经网络的偏光下热解炭织构类型识别[J].西安交通大学学报,2010,44(7):46-49. 被引量:3

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部