摘要
在复Hilbert空间中,给出了(δ,ε)-近似保正交映射的定义,证明了非零(δ,ε)-近似保正交线性映射有界并且是下有界的,得到了有界线性映射成为(δ,ε)-近似保正交线性映射的一个充分条件.
In complex Hilbert ping was given. The nontrivial ( spa ces, the definition of (δ,ε)- approximate orthogonality-preserving map )-approximate orthogonality-preserving linear mapping was proved to be bounded and bounded below, and a sufficient condition for a bounded linear mapping to be (δ,ε)- approximate orthogonality preserving linear mapping was obtained.
出处
《甘肃科学学报》
2014年第4期1-4,10,共5页
Journal of Gansu Sciences
基金
陕西省科技厅科研项目(2012JM1018)
陕西省教育厅科研项目(2013JK0570)
陕西省教育厅教改项目(13BZ56)
商洛学院教改项目(13JYJX101)
关键词
HILBERT空间
正交
近似正交
(δ
ε)-近似保正交映射
Hilbert space
Orthogonality
Approximate orthogonality
(δ,ε)-approximate orthogonality- preservmg mapping