期刊文献+

Hilbert空间上的(δ,ε)-近似保正交映射 被引量:3

(δ,ε)-Approximate Orthogonality-Preserving Mapping in Hilbert Space
下载PDF
导出
摘要 在复Hilbert空间中,给出了(δ,ε)-近似保正交映射的定义,证明了非零(δ,ε)-近似保正交线性映射有界并且是下有界的,得到了有界线性映射成为(δ,ε)-近似保正交线性映射的一个充分条件. In complex Hilbert ping was given. The nontrivial ( spa ces, the definition of (δ,ε)- approximate orthogonality-preserving map )-approximate orthogonality-preserving linear mapping was proved to be bounded and bounded below, and a sufficient condition for a bounded linear mapping to be (δ,ε)- approximate orthogonality preserving linear mapping was obtained.
作者 孔亮 李超
出处 《甘肃科学学报》 2014年第4期1-4,10,共5页 Journal of Gansu Sciences
基金 陕西省科技厅科研项目(2012JM1018) 陕西省教育厅科研项目(2013JK0570) 陕西省教育厅教改项目(13BZ56) 商洛学院教改项目(13JYJX101)
关键词 HILBERT空间 正交 近似正交 ε)-近似保正交映射 Hilbert space Orthogonality Approximate orthogonality (δ,ε)-approximate orthogonality- preservmg mapping
  • 相关文献

参考文献4

二级参考文献33

  • 1王尊全.高等代数考研试题解析[M].北京:机械工业出版社,2009.
  • 2张禾瑞.高等代数[M].北京:高等教育出版社,1983.422.
  • 3王萼芳,石生明.高等代数[M].北京:高等教育出版社,2003.
  • 4Hyers D H. On the stability of the linear functional equation [J ]. Proceedings of the National Academy of Sciences of United States of America, 1941, 27(4):222-224.
  • 5Rassias T M. On the stability of the linear mapping in Banach spaces [ J ]. Proceedings of the American Mathematical Society, 1978, 72(2) :297-300.
  • 6Baker J. The stability of the cosine equation [J].Proceedings of the American Mathematical Society, 1980, 80(3) :411-416.
  • 7Gajda Z. On stability of additive mappings [J]. International Journal of Mathematics and Mathematical Sciences, 1991, 14(3):431-434.
  • 8Rassias T M, Semerl P. On the behavior of mappings which do not satisfy Hyers-Ulam stability [J]. Proceedings of the American Mathematical Society, 1992, 114(4) :989-993.
  • 9Gavruta P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings[J]. Journal of Mathematical Analysis and Applications, 1994, 184 (3)431-436.
  • 10Badora R. On approximate ring homomorphisms [J ]. Journal of Mathematical Analysis and Applications, 2002, 276(2) :589-597.

共引文献12

同被引文献51

  • 1张芳娟,吉国兴.B(H)上保正交性的可加映射[J].陕西师范大学学报(自然科学版),2005,33(4):21-25. 被引量:5
  • 2Ding G G. Isometric and almost isometric operators [ J ]. Acta. Math. Sci. , 1984,2:221 - 226.
  • 3Chmieli6ski J. Linear mappings approximately preserving orthogonality[J]. J. Math. Anal. Appl. ,2005, 301 (1):158-169.
  • 4Chmielifiski J. Stability of the orthogonality preserving property in finite-dimensional inner product spaces[ J~. J. Math. Anal. Appl. ,2006,318(2) :433 -443.
  • 5Blanco A, Turngek A. On maps that preserve orthogonality in normed spaces [ J ]. Proc. Roy. Soc. Edinburgh Sect. A. , 2006,136(4) :709 -716.
  • 6Tum~ek A. On mappings approximately preserving orthogonalityIJ]. J. Math. Anal. Appl. ,2007, 336(1) :625 -631.
  • 7Chmielifiski J. Remarks on orthogonality preserving mappings in normed spaces and some stability problems [ J ]. Banach J. Math. Anal. ,2007,1(1) :117 - 124.
  • 8Ili~evic D, Tum~ek A. Approximately orthogonality preserving mappings on C*-modules[ J]. J. Math. Anal. Appl. ,2006, 318(2) :433 -443.
  • 9Chmielifiski J, W6jcik P. Isosceles-orthogonality preserving property and its stability [ J ]. Nonlinear Anal. , 2010,72 ( 8 ) : 1 445 - 1 453.
  • 10MojSkerc B, TurnSek A. Mapping approximately preserving orthogonality in normed spaces [ J ]. Nonlinear Anal. , 2010,73 (12) :3 821 -3 831.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部