期刊文献+

锯齿形等离子体激励器纳秒脉冲放电及红外辐射温度特性 被引量:7

Characteristic of Discharge and Infrared Radiation Temperature of Saw-toothed Plasma Actuators Under Nanosecond-pulse Voltage
下载PDF
导出
摘要 为优化表面介质阻挡放电激励器的布局形式,基于ns脉冲表面介质阻挡放电快速放热诱导压缩波进行流动控制的原理,设计了具有平面和锯齿类型高压电极的激励器。在ns脉冲电压的驱动下,研究了其放电特性和激励器表面红外辐射温度特性,并比较了3种激励器的放电能量、峰值功率、峰值电流、表面红外辐射温度。结果表明:施加同样电压时,高压电极为锯齿形的激励器具有较高的放电电流、瞬时放电功率以及放电能量;3种激励器表面温度最高处均位于高、低压电极之间的介质表面处,且锯齿形激励器表面的局部最高红外辐射温度可达88℃,高于平面形激励器的72℃。从脉冲放电能量和表面红外辐射温度的角度验证了锯齿形激励器在流动控制上具有潜在优势,可供提升流动控制效果和优化激励器参考。 In order to optimize the form of an actuator, which is used for flow control, on the basis of the mechanism of the shock wave induced by instantaneous heating from the nanosecond pulse surface dielectric barrier discharge, we designed three actuators, possessing plane and saw-toothed high-voltage electrodes, respectively. Driving them by high-voltage nanosecond pulses, we investigated their discharge characteristics and surface infrared radiation tempera- tures, and compared their discharge energies, peak powers, peak currents, and surface infrared radiation temperatures. It is found that the actuator with saw-toothed high-voltage electrodes has higher discharge energy, peak power, and peak current. For all the three actuators, the highest temperatures locate on the dielectric surface between the electrodes. The local highest temperature of the saw-toothed actuator is 88 ℃, higher than that of the planar actuator, which is 72 ℃. Hence, the potential advantages of saw-toothed actuator in aspects of discharge energy and infrared radiation temperature are verified. The results could be used as a reference for enhancing the flow control and optimizing the actuators.
出处 《高电压技术》 EI CAS CSCD 北大核心 2014年第7期2077-2083,共7页 High Voltage Engineering
基金 国家自然科学基金(51207169 51276197)~~
关键词 NS脉冲 等离子体 介质阻挡放电 锯齿 红外辐射 激励器 nanosecond pulse plasma dielectric barrier discharge sawtooth the infrared radiation actuator
  • 相关文献

参考文献28

二级参考文献246

共引文献227

同被引文献76

  • 1ZHANG PanFeng1,2, LIU AiBing1 & WANG JinJun1,2 1Institute of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China,2Key Laboratory of Fluid Mechanics, Ministry of Education, Beijing 100191, China.Flow structures in flat plate boundary layer induced by pulsed plasma actuator[J].Science China(Technological Sciences),2010,53(10):2772-2782. 被引量:8
  • 2苏长兵,宋慧敏,李应红,张朴,吴云,梁华.基于等离子体激励的圆柱绕流控制实验研究[J].实验流体力学,2006,20(4):45-48. 被引量:26
  • 3Corke T C, Post M L, Orlov D M. Single-dielectric barrier discharge plasma enhanced aerodynamics: concepts, optimization, and applica- tions[J]. Journal of Propulsion and Power, 2008, 24(5): 935-945.
  • 4Greenblatt D, Kastantin Y, Nayeri, C N, et al. Delta wing flow control using dielectric barrier discharge actuators[J]. AIAA Journal, 2008, 46(6): 1554-1560.
  • 5Huang J, Corke T, Thomas F. Plasma Actuators for separation control of low-pressure turbine blades[J]. AIAA Journal 2006, 44( 1 ): 51-57.
  • 6LI Y H, WU Y, ZHOU M, et al. Control of the comer separation in a compressor cascade by steady and unsteady plasma aerodynamic actu- ation[J]. Experiments in Fluids, 2010, 48: 1015-1023.
  • 7Little J, Nishihara M, Adamovich I, et al. Separation control fi'om the flap of a high-lift airfoil using DBD plasma actuators[C]//AIAA Flow Control Conference. Orlando, Florida: AIAA, 2009: 145.
  • 8M P Patel, T T Ng, S Vasudevan. Plasma actuators for hingeless aero- dynamic control of an unmanned air vehicle[C]//AIAA Flow Control Conference. Reno, USA: AIAA, 2006: 3495.
  • 9Gaitond D V. Analysis of plasma-based flow control mechanisms through large-eddy simulations[J]. Computers & Fluids, 2013, 85: 19-26.
  • 10Rethmel C, Little J, Takashima K, et al. Flow separation control over an airfoil with nanosecond pulse driven DBD plasma actuators. AIAA -2011-487, 2011.

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部