期刊文献+

正、负电晕对大肠杆菌气溶胶收集的影响 被引量:5

Positive and Negative Corona Discharge on Precipitation of E.coli-aerosols
下载PDF
导出
摘要 为开发出新型有效的微生物气溶胶静电采样系统,考察了线筒式正、负电晕放电对大肠杆菌气溶胶带电荷情况的影响及收集作用。通过TK-3微生物气溶胶发生器产生大肠杆菌气溶胶,利用在线气溶胶分析装置ELPI(electrical low pressure impactor)研究了大肠杆菌气溶胶的带电荷情况。实验结果显示:大肠杆菌气溶胶空气动力学直径主要集中在0.8μm,不加电场时单个大肠杆菌气溶胶携带约9个正电荷;随着外加电场强度的改变,大肠杆菌微粒所带的电荷数也随之改变。单个大肠杆菌气溶胶在负电晕条件下最高可带26个负电荷,在正电晕条件下,最高可带14个正电荷。负电晕对微生物的收集作用要比正电晕高,最高可达到97%的收集效率,而正电晕最高可达到82%。 In order to develop a new type of static-charge bio-aerosol collectors, we investigated the influence of positive and negative corona discharge on the precipitation ofE.coli-aerosols. A TK-3 collision nebulizer was utilized to generate the E.coli-aerosols for testing, and the real-time number densities and the charges carried by the aerosols were measured using an ELPI (electrical low pressure impactor). The results indicate that the E.coli-aerosols are mainly around 0.8 μm in aerodynamic diameter. E.coli-aerosol naturally carries about 9 positive elementary charges per cell, yet this amount changes with the applied electric field: per E.coli-aerosol cell carries as much as 26 negative elementary charges or 14 positive elementary charges in negative or positive corona discharges, respectively. The precipitation efficiency of negative corona discharge is higher than that of positive corona discharge. The maximum precipitation efficiencies of negative and positive discharges for E.eoli-aerosol are ab6ut 97% and 82%, respectively.
出处 《高电压技术》 EI CAS CSCD 北大核心 2014年第7期2251-2256,共6页 High Voltage Engineering
基金 国家自然科学基金(21006092) 中央高校基本科研业务费专项资金(2012XZZX001) 国家环境保护环境微生物利用与安全控制重点实验室开放基金(MARC2012D012)~~
关键词 大肠杆菌气溶胶 正电晕 负电晕 ELPI 电荷 收集效率 E.coli-aerosols positive corona discharge negative corona discharge ELPI electric charge precipitation Key efficiency
  • 相关文献

参考文献17

  • 1Government Printing Office. Air quality criteria for particulate matter, volume I of III[S]. Washington, D.C., USA: Government Printing Of- rice, 1996.
  • 2Government Printing Office. Air quality criteria for particulate matter, volume II of Ill[S]. Washington, D.C., USA: Government Printing Of- rice, 1996.
  • 3Douwes J, Thome P, Pearce N, et aL Bioaerosol health effects and exposure assessment: progress and prospects[J]. Annals of Occupa- tional Hygiene, 2003, 47(3): 187-200.
  • 4Lacey J, Dutkiewicz J. Bioaerosols and occupational lung disease[J]. Journal of Aerosol Science, 1994, 25(8): 1371-1404.
  • 5Han T, Mainelis G. Design and development of an electrostatic samp- ler for bioaerosols with high concentration rate[J]. Journal of Aerosol Science, 2008, 39(12): 1066-1078.
  • 6Yao M, Mainelis G. Utilization of natural electrical charges on air- borne microorganisms for their collection by electrostatic means[J]. Journal of Aerosol Science, 2006, 37(4): 513-527.
  • 7Xu Y Z, Zheng C, Liu Z, et al. Electrostatic precipitation of airborne bio-aerosols[J]. Journal of Electrostatics, 2013, 71 (3): 204-207.
  • 8Tan M M, Shen F X, Yao M S, et al. Development of an automated electrostatic sampler (AES) for bioaerosol detection[J]. Aerosol Science and Technology, 2011, 45(9): 1154-1160.
  • 9Mainelis G, Adhikari A, Willeke K, et al. Collection of airborne mi- croorganisms by a new electrostatic precipitator[J]. Journal of Aerosol Science, 2002, 33(10): 1417-1432.
  • 10Tzamkiozis T, Ntziachristos L, Mamakos A, et al. Aerodynamic and mobility size distribution measurements to reveal biodiesel effects on diesel exhaust aerosol[J]. Aerosol Science and Technology, 2011, 45(5): 587-595.

同被引文献182

引证文献5

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部