期刊文献+

基于子空间的目标跟踪算法研究 被引量:15

Subspace based target tracking algorithm
下载PDF
导出
摘要 末制导跟踪阶段,导弹的飞行姿态,弹体与目标的距离以及目标自身的运动姿态和形态均会发生较大的变化,采用单一固定模板无法实现稳定跟踪。本文提出一种新的基于子空间的运动目标跟踪算法,首先采用一组正交的稀疏子空间特征向量表示目标模型,然后采用增量方法不断更新子空间模型,以适应由于目标内在和外在因素所造成的在外观上的变化,从而提高跟踪精度;采用重要性采样算法以及最大似然估计,解决复杂的优化问题。实验结果表明,当摄像机与背景发生较大相对运动以及目标姿态发生剧烈变化时,仍然能够实现对目标的持续稳定跟踪,平均跟踪误差小于10个像素。基本满足末制导跟踪系统的稳定性和鲁棒性等要求。 In terminal guidance tracking phase,the missile's flight attitude,the distance from missile to the target and target's moving status and appearance change a lot.Using a single fixed template cannot achieve stable tracking.In this paper,a new subspace based moving target tracking algorithm is proposed.First,a set of orthogonalsparse subspace feature vectors are used to describe target model.Then,using incremental method to continuously update the subspace model to accommodate the target changes in appearance which is caused by intrinsic and extrinsic factors,therefore,the tracking accuracy is improved.Finally,importance sampling algorithm and maximum likelihood estimation are applied to solve complex optimization problems.Experimental results show that when the camera and the background suffer larger relative motion and target status changed dramatically,the algorithm can still be able to achieve sustained and stable tracking,and the average tracking error keeps less than 10 pixels.It can satisfy the system requirements of stability and robustness for terminal guidance tracking.
出处 《液晶与显示》 CAS CSCD 北大核心 2014年第4期617-622,共6页 Chinese Journal of Liquid Crystals and Displays
基金 国家863计划基金资助项目(No.2012AA7031010B) 国家自然科学基金(No.61172111)
关键词 末制导 目标跟踪 子空间 稀疏矩阵 terminal guidance target tracking subspace sparse matrix
  • 相关文献

参考文献11

二级参考文献63

共引文献155

同被引文献167

  • 1王家骐,金光,颜昌翔.机载光电跟踪测量设备的目标定位误差分析[J].光学精密工程,2005,13(2):105-116. 被引量:122
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3陈华,安娜,杨清华.基于GPS实测控制点的SPOT 5 1A数据几何校正方法精度比较[J].国土资源遥感,2007,19(4):47-50. 被引量:9
  • 4WU Y, LIM J, YANG M H. Online object tracking: A benchmark [C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, 2013: 2411-2418.
  • 5ROSS D A, LIM J, LIN R S, et al. Incremental learning for robust visual tracking [J]. International Journal of Computer Vision, 2008, 77 (1-3) : 125- 141.
  • 6BABENKO B, YANG M H, BELONGIE S. Robust object tracking with online multiple instance learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
  • 7GRABNER H, GRABNER M, BISCHOF H. Real time tracking via on-line boosting [C]. Proceedings of British Machine Vision Conference, Edinburgh, Scotland= BMVA, 2006: 47-56.
  • 8GRABNER H, LEISTNER C, BISCHOF H. Semi- supervised on-line boosting for robust tracking[C]. Proceedings of European Conference on Computer Vision, Berlin, Germany: Springer, 2008: 234- 247.
  • 9KALAL Z, MIKOLAJCZYK K,MATAS J. Tracking- learning detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34 (7): 1409-1422.
  • 10WANG N Y, YEUNG D Y. Learning a deep compact image representation for visual tracking [ C ]. Proceedings of Twenty Seventh Annual Conference on Neural InJbrmation Processing Systems, Lake Tahoe , USA: Nevada, 2013: 5-10.

引证文献15

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部