期刊文献+

基于电阻抗成像技术的脑病变组织检测仿真研究 被引量:4

Detection of brain anomaly based on electrical impedance imaging simulation research
下载PDF
导出
摘要 目的采用电阻抗成像技术重建三维头部模型的阻抗分布图像,检测组织是否发生病变。方法在有限元球头模型和真实头部模型两种三维组织模型上进行仿真,采用微分进化算法重构组织图像,有效定位阻抗突变区域,检测病变组织部位。结果该算法能够精确重建组织图像,成功检测病变区域。结论本法是一种简单、鲁棒性强的进化类全局优化算法,用于电阻抗成像技术中,进化总能得到很好收敛,成像质量较高,可靠性较强。 Objective To reconstruct the real conductivity images of 3D head model, and to detect brain lesion by means of electrical impedance tomography (EIT) technology. Methods In order to locate the pathological changes of head impedance effectively, a series of computer simulation were conducted on a finite element model and a realistic-geometry head model, and differential evolution algorithm was adopted to reconstruct the conductivity image of the head tissue. Results The proposed algorithm could accurately reconstruct the impedance of the head tissue and successfully detect lesion area presently. Conclusion The global optimization and evolution algorithm can be applied to EIT simply with good convergent and robustness. The reconstructed images show higher quality and are reliable.
作者 闫丹丹 陈会
出处 《中国医学影像技术》 CSCD 北大核心 2014年第7期1113-1116,共4页 Chinese Journal of Medical Imaging Technology
基金 国家自然科学基金青年基金项目(NSFC-51107130)
关键词 电阻抗成像 脑疾病 有限元分析 微分进化 Electrical impedance tomography Brain diseases Finite element analysis Differential evolution
  • 相关文献

同被引文献26

  • 1李颖,徐桂芝,饶利芸,何任杰,颜威利.微分进化算法在头部电阻抗成像中的应用[J].中国生物医学工程学报,2005,24(6):672-675. 被引量:11
  • 2闫丹丹,张孝通,朱善安,Bin He.头部组织三维核磁共振电阻抗成像算法的仿真研究[J].生物物理学报,2006,22(6):461-470. 被引量:7
  • 3HARTINGER A E,GUARDO R,et al.EIT system and reconstruction algorithm adapted for skin cancer imaging[J].Information Science,Signal Processing and their Applications(ISSPA),2012(7):798-803.
  • 4ZHAO Shu,DENG Juan,SHA Hong,et al.The impact of the measurement accuracy and the excitation pattern on EIT image reconstruction[J].International Conference on Biomedical Engineering and Informatics(BMEI),2013(12):59-63.
  • 5CONSTANTINOU L,TRIANTIS I F,BAYFORD R,et al.Highpower cmos current driver with accurate trans-conductance for electrical impedance tomography[J].Biomedical Circuits and Systems,2014(2):1-9.
  • 6MOURA F S,AYA C C,FLEURY A T,et al.Dynamic imaging in electrical impedance tomography of the human chest with online transition matrix identification[J].IEEE Transactions on Biomedical Engineering,2010(2):422-431.
  • 7KURNIADI D,RANUDDIN M,MAULAN A A.Fuzzy assisted parameter selection rule in regularized newton algorithm of electrical impedance tomography[J].Information Technology and Biomedical Engineering,2011(11):1-4.
  • 8Md.ISLAM R,Md.KIBER A.Electrical impedance tomography imaging using gauss-newton algorithm[J].International Conference on Informatics,2014(3):1-4.
  • 9RIBEIRO R R,FEITOSA A R S,SOUZA R E,et al.Reconstruction of electrical impedance tomography images using genetic algorithms and non-blind search[J].Biomedical Imaging(ISBI),2014(5):153-156.
  • 10FEITOSA R S,RIBEIRO R R,BARBOSA V F,et al.Reconstruction of electrical impedance tomography images using particle swarm optimization,genetic algorithms and non-blind search[J].Biosignals and Robotics for Better and Safer Living(BRC),2014(5):1-6.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部