期刊文献+

基于镁合金{1012}孪生的织构调整及屈服行为演变 被引量:4

Evolution of texture and yielding behavior induced by{1012} twinning of magnesium alloy
下载PDF
导出
摘要 研究挤压态镁合金沿挤压方向预压缩对随后沿ED方向拉伸以及垂直于ED方向压缩屈服行为的影响。结果表明:在所研究的1%~9%压缩预变形范围内,不同预变形量对随后沿ED方向拉伸的屈服影响几乎一样,都能使沿挤压方向拉伸屈服强度下降到约120 MPa,这几乎与沿挤压方向压缩屈服强度122 MPa一致;沿ED方向预压缩将导致垂直于ED方向压缩屈服强度显著增加,且不同预变形量对随后沿垂直于ED方向压缩的屈服行为影响几乎一致。造成不同施载方向屈服行为不一样的原因是不同施载方向孪生变体的最大施密特因子值不同。最大施密特因子值越大,孪生启动时的临界剪切应力越小,屈服强度也就越低。 The effects of compressive pre-deformation on subsequent tension along extrusion direction (ED) and compression perpendicular to ED were investigated in an extruded AZ31 Mg alloy. The results show that the subsequent tensile yield stress decreases to about 120 MPa irrespective of the prestrain from 1%to 9%. The tensile yield stresses of about 120 MPa for the samples subjected to pre-compression are nearly equal to that of compression along ED (about 122 MPa) for the sample without any prestrain. However, the pre-compression along ED leads to an obvious increase in the yield stress for subsequent compression perpendicular to ED. Different prestrains exhibit similar effects on the yielding behavior during subsequent compression perpendicular to ED. Because of the difference in the highest Schmid factors for{10 1 2} twinning, the samples exhibit different yielding behaviors under different strain paths. The critical resolved shear stress (CRSS) decreases with the increase of the highest Schmid factor for {10 1 2} twinning.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2014年第5期1111-1117,共7页 The Chinese Journal of Nonferrous Metals
基金 科技部国际合作项目(2011DFR50010) 重庆大学大型仪器设备开放基金资助项目(2012121513)
关键词 镁合金 孪生 织构 施密特因子 magnesium alloy twinning texture Schmid factor
  • 相关文献

参考文献9

二级参考文献281

共引文献763

同被引文献38

  • 1陈振华,杨春花,黄长清,夏伟军,严红革.镁合金塑性变形中孪生的研究[J].材料导报,2006,20(8):107-113. 被引量:48
  • 2刘倩,单忠德.镁合金在汽车工业中的应用现状与发展趋势[J].铸造技术,2007,28(12):1668-1671. 被引量:26
  • 3DEL VALLE J A, PEREZ-PRADO M T, RUANO O A. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy[J]. Materials Science and Engineering A, 2003, 355(1/2): 68-78.
  • 4KHAN A S, PANDEY A, GNAUPEL-HEROLD T, MISHRA R K. Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures[J]. International Journal of Plasticity, 2011, 27(5): 688-706.
  • 5BARNETT M R. Twinning and the ductility of magnesium alloys Part II. "Contraction" twins[J]. Materials Science and Engineering A, 2007, 464(1/2): 8-16.
  • 6MARTIN E, CAPOLUNGO L, JIANG L A, JONAS J J. Variant selection during secondary twinning in Mg-3%AI[J]. Acta Materialia, 2010, 58(11): 3970-3983.
  • 7BARNETT M R, KESHAVARZ Z, BEER A G, MAX. Non-Schmid bchaviour during secondary twinning in a polycrystalline magnesium alloy[J]. Acta Matedalia, 2008, 56(1) 5-15.
  • 8CHINO Y, KIMURA K, HAKAMADA M, MABUCHI M. Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy[J]. Materials Science and Engineering A, 2008, 485(1/2): 311-317.
  • 9WANG, B S, XIN R L, HUANG G J, LIU Q. Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression[J]. Materials Science and Engineering A, 2012, 534 588-593.
  • 10WANG Y N, HUANG J C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-AI-Zn alloy[J]. Acta Materialia, 2007, 55(3): 897-905.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部