期刊文献+

一类内部点级联的PDE-ODE系统的边界控制 被引量:6

Boundary control for a partial differential equation-ordinary differential equation system cascaded at internal point
下载PDF
导出
摘要 本文运用backstepping方法研究了一类偏微分方程与常微分方程(PDE-ODE)级联系统的能稳性.常见的级联系统在边界点x=0处级联,而本文所讨论的级联系统在内部点x0∈(0,1)处级联,级联点的改变使得新系统的控制问题更加复杂.针对新系统,首先,我们改进了backstepping方法中的常见变换,改进后的变换与常见变换相比,增加了变换中的核函数,且得到的是带有多个相容性条件的核方程组,给求解带来了困难.文中运用了一系列的技巧解出核函数,从而得到反馈控制器;其次,运用同样的方法找到改进变换的逆变换;最后,选择合适范数,利用变换的有界性证明得到闭环系统的稳定性. Stabilization of a partial differential equation-ordinary differential equation (PDE-ODE) system cascaded at internal point is considered by boundary control. This system is more complicated than the conventional ones because the interconnection point is the internal point x0 ∈ (0, 1). For this new system, a new backstepping transformation is introduced, which contains four kernel functions. Because the number of kernels is increased, the kernel equations with the compatibility conditions are more complicated. Fortunately, the kernel equations can be solved by a series of mathematical tricks to obtain their solutions. Then, the feedback controller is developed by using these kernel functions. The inverse transformation is derived by using the same procedure. Finally, we choose a proper norm and establish the stability of the closed-loop system by the boundedness of the transformation and the inverse transformation.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2014年第6期779-785,共7页 Control Theory & Applications
基金 国家自然科学基金资助项目(11301427) 中央高校基本业务费资助项目(XDJK2014B021) 四川省教育厅资助项目(13ZB0101)
关键词 偏微分方程与常微分方程(PDE-ODE)级联系统 边界控制 稳定性 BACKSTEPPING方法 PDE-ODE cascaded system boundary control stability backstepping method
  • 相关文献

参考文献16

  • 1李晓光,刘金琨.面向偏微分方程的连续反演控制算法综述[J].控制理论与应用,2012,29(7):825-832. 被引量:9
  • 2BOSKOVIC D M,KRSTIC M. Backstepping control of chemical tubular reactors[J].Computers and Chemical Engineering,2002,(07):1077-1085.
  • 3BOSKOVIC D M,KRSTIC M. Stabilization of a solid propellant rocket instability by state feedback[J].International Journal of Ro-bust and Nonlinear Control,2003,(05):484-495.
  • 4KRSTIC M,SMYSHLYAEV A. Boundary Control of PDEs:A Course on Backstepping Designs[M].Philadelphia,American:Soci-ety for Industrial and Applied Mathematics,2008.
  • 5KRSTIC M. Compensating actuator and sensor dynamics governed by diffusion PDEs[J].Systems&Control Letters,2009,(05):372-377.
  • 6LIU W J. Boundary feedback stabilization of an unstable heat equa-tion[J].SIAM Journal on Control and Optimization,2003,(03):1033-1043.
  • 7杜燕,许跟起.具有边界控制的线性Timoshenko型系统的指数稳定性[J].控制理论与应用,2008,25(1):33-39. 被引量:1
  • 8邬依林,刘屿,吴忻生.基于时变内流的柔性立管自适应边界控制[J].控制理论与应用,2013,30(5):618-624. 被引量:8
  • 9KRSTIC M. Compensating a string PDE in the actuation or in sens-ing path of an unstable ODE[J].IEEE Transactions on Automatic Control,2009,(06):1362-1368.
  • 10KRSTIC M,SMYSHLYAEV A. Backstepping boundary control for first order hyperbolic PDEs and application to systems with actuator and sensor delays[J].Systems&Control Letters,2008,(09):750-758.

二级参考文献127

  • 1COWIN S C, NUNZIATO J W. Linear elastic materials with voids[J]. J of Elasticity, 1983, 13(2): 125- 147.
  • 2NUNZIATO J W, COWIN S C. A nonlinear theory of elastic matericals with voids[J]. Arch Rational Mech Anal, 1979, 72(2): 175 - 201.
  • 3COWIN S C. The viscoelastic behavior of linear elastic matericals with viods[J]. J of Elasticity, 1985, 15(2): 185 - 191.
  • 4CIARLETTA M, IESAN D. Non-classical Elastic Solids[M]. New York: Longnan Scientific & Technical, 1993.
  • 5QUINTANILLA R. Slow dacay for one-dimensional Porous dissipation elasticity[J]. Appl Math Letters, 2003, 16(4): 487 - 491.
  • 6PAZY A. Semigroup of Linear Operators and Applications to Partial Differential Equations[M]. New York: Springer, 1983.
  • 7LYUBICH Y I, PHONG V Q. Asymptotic stability of linear differential equations in banach spaces[J]. Studia Math, 1988, 88:34 - 37.
  • 8VU Q P, WANG J M, XU G Q, et al. Spectral analysis and system of fundamental solutions for timoshenko beams[J]. Applied Mathematics Letter, 2005, 18(2): 127 - 134.
  • 9XU G Q, FENG D X. Riesz basis property of a Timoshenko beam with boundary feedback and application[J]. IMA J of Applied Mathematics, 2002, 67(4): 357 - 370.
  • 10XU G Q, YUNG S P. Stabilization of Timoshenko beam by means of pointwise controls[J]. ESAIM Control Optim Calc Var, 2003, 9:579 - 600.

共引文献14

同被引文献12

  • 1M. Krstic, A. Smyshlyaev. Boundary control of PDEs : A course on hackstepping design[J]. SIAM, Philadelphia,2008:76-78.
  • 2D. M. Boskovi, M. Krstic. Stabilization of a solid propellant rocket instability by state feedback [J3. InternationalJournal of Robust and Nonlinear Control, 2003(13) *483 - 495.
  • 3A. Smyshlyaev, M. Knstic.C/o.>W form boundary state feedbacks for a class of partial integro-differential equa-IEEE Transanction on Automatic Control, 2004(49) :2185 -2202.
  • 4Z. C. Zhou, C. L. Guo.Stabilization of linear heat equation ivith a heat source at intermediate point by boundarycontrol [J]. Automatica, 2013(49) : 448 - 456.
  • 5C. L. Guo, C. K. Xie,Z. C. Zhou.Stabilization of a spatially non-causal reaction _diffusion equation by boundarycontrol [J]. Int. J. Robust. Nonlinear Control, 2014(27) :1 -17.
  • 6M. Krstic,B. Z .Guo,A.Balogh, etc.Output - feedback stabilization of an unstable wave equation [J]. Automatic,2008(44):63-74.
  • 7李晓光,刘金琨.面向偏微分方程的连续反演控制算法综述[J].控制理论与应用,2012,29(7):825-832. 被引量:9
  • 8郭春丽.一类热源在两端的反应扩散方程的边界控制[J].四川文理学院学报,2015,25(5):15-18. 被引量:1
  • 9甄志远,谢成康,何翠华.一类多输入多输出级联系统的边界控制[J].西南大学学报(自然科学版),2016,38(5):119-124. 被引量:1
  • 10秦贞华,何熊熊,李刚,伍益明.考虑量化输入和输出约束的互联系统自适应分散跟踪控制[J].自动化学报,2021,47(5):1111-1124. 被引量:10

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部