期刊文献+

超声处理对鲜切马铃薯中营养成分的影响 被引量:1

Effects of Ultrasonic Processing on Nutritional Compositions of Fresh-cut Potatoes
原文传递
导出
摘要 目的:研究不同超声处理对鲜切马铃薯中的营养成分产生的影响,旨在阐明超声处理技术应用到鲜切马铃薯保鲜的中可行性。方法:分别采用Folin-Ciocaileu比色法、考马斯亮蓝法、直接滴定法、指示剂滴定法、紫外分光光度计法测定总酚、蛋白质、还原糖、可滴定酸和Vc含量。结果:超声处理能够抑制贮藏后期的鲜切马铃薯的总酚升高、有利于还原糖和Vc的保留,而对蛋白质、可滴定酸含量变化的作用效果不明显。其中,25℃下300 Hz超声处理8 min的鲜切马铃薯效果较好。结论:超声处理能有效保持鲜切马铃薯的营养成分。 Objective: In order to apply ultrasonic processing technology for fresh-cut potatoes, the changes of nutritional compositions of fresh-cut potatoes processed by different ultrasonic processing was investigated. Methods: the contents of total phenol, protein, reducing sugar, titratable acidity and vitamin C were analyzed using the relevant detection method. Results: Ultrasonic Processing could efficiently reduce the contents of total phenol, increasing the content reducing sugar, and vitamin C . Protein and titratable acidity were affected rarely. According to the results, the effects of ultrasonic processing on fresh-cut potato were slightly better under 300 Hz ultrasonic treatments which continued 8 min at 25 ℃. Conclusion: Ultrasonic processing could efficiently keep the nutritional compositions of fresh-cut potatoes.
出处 《现代生物医学进展》 CAS 2014年第26期5023-5026,共4页 Progress in Modern Biomedicine
基金 国家"十二五"科技支撑项目(2012BAK17B 05) 山东省自然科学基金项目(ZR2012CM038) 国家大学生创新计划(201210434024)
关键词 超声处理 鲜切马铃薯 营养成分 Ultrasonic processing Fresh-cut potatoes Nutritional compositions
  • 相关文献

参考文献21

  • 1Ricoa D, Marti n-Diana A B., Barat J M, et al. Extending and measuring the quality of fresh-cut fruit and vegetables: a review [J]. Trends in Food Science & Technology, 2007, 18:373-386.
  • 2Roeculi P, Galindo F G., Mendoza F. Effects of the application ofanti- browning substances on the metabolic activity and sugar composition of fresh-cut potatoes [J]. Postharvest Biology and Technology, 2007, 43(1): 151-157.
  • 3Sasaki Tamaki Doris, Perez Karin, Himoto J C. Effects of reconditioning on the quality of different processing potato cultivars after low temperature storage[J]. Food preservation Science, 2004, 30 (3): 129-135.
  • 4Koukounaras A, Diamantidis G, Sfakiotakis S. The effect of heat treatment on quality retention of fresh-cut peach [J]. Postharvest Biology and Technology, 2008, 48(1): 30-36.
  • 5Alothman M, Bhat R, Karim A A. UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits [J]. Innovative Food Science and Emerging Technologies, 2009, 10(4): 512-516.
  • 6Pietro R, Federico G G, Fernando M, et al. Effects of the application ofanti-browning substances on the metabolic activity and sugar compo- sition of fresh-cut potatoes [J]. Postharvest Biology and Technology, 2007, 43(1): 151-157.
  • 7Cacace J E, Delaquis P J, Mazza G. Effect of chemical inhibitors and storage temperature on the quality of fresh-cut potatoes [J]. Journal of Food Quality, 2002, 3(25): 181-195.
  • 8Altunkaya A, Gomen V. Effect of various anti-browning agents on phenolic compounds profile of fresh lettuce (L. sativa) [J]. Food Chemistry, 2009, 117(1): 122-126.
  • 9Zhao C, Zhu C H. Effects of aqueous chlorine dioxide treatment on nutritional components and shelf-life of mulberry fruit (Morus alba L.)[J]. Journal of Bioscience and Bioengineering, 2011, 111 (6): 675- 681.
  • 10Veltman R H, Kho R M, Schaik A C R, et al. Ascorbic acid and tissue browning in pears under controlled atmosphereconditions [J]. Postharvest Biology and Technology, 2000, 19(2): 129-137.

二级参考文献15

  • 1[1]G.Noctor and C.H. Foyer,Ascorbate and glutathione: keeping active oxygen under control,Annu.Rev Plant Physiol Plant Mol Biol 49(1998),249-279.
  • 2[2]Christine H Foyer and John M Fletcher, Plant antioxidants: colour me healthy,Biologist 48(2001),115-120.
  • 3[3]G.L.Wheeler, M.A.Jones and N.Smirnoff, The biosynthetic pathway of vitamin C in higher plants, Nature 393 (1998), 365 -369.
  • 4[4]Sonja D. Veljovic-Jovanovic, Cristina Pignocchi, Graham Nocter, et al, Low ascorbic acid in the vtc-1 mutant of arabidopsis is associated with decredsed growth and intracellular redistribution of the antioxidant system, Plant Physiol 127(2001),426-435.
  • 5[5]Guy Kiddle, Gabriela M.Pastori, Stephanie Bernard, et al, Effects of leaf ascorbate content on defence and photosynthesis gene expression in Arabidopsis thaliana, Antioxidants & Redox Siganaling 5(2003),23-32.
  • 6[6]Mike J.May, Teva Vernoux, Chris Leaver, et al, Glutathione homeostasis in plants: implication for environmental sensing and plant development, Journal of experimental botany 49(1998),649-667.
  • 7[7]Chengbin Xiang and David J.Oliver, Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in arabidopsis, The plant cell 10(1998),1539-1550.
  • 8[8]Graham Noctor, Leonardo Gomez, Helene Vanacker, Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling, Journal of experimental botany 53(2002), 1283 -1304.
  • 9[9]Ron Mittler, Oxidant stress, antioxidants and stress tolerance, Trends in plant science 7(2002),405-410.
  • 10[10]G.Noctor, S.Velojovic-Jovanovic and C.H. Foyer, Peroxide processing in photosynthesis: antioxidant coupling and redox signalling, Phil Trans. R.Soc. Lond. 355(2000), 1465 -1475.

同被引文献15

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部