期刊文献+

基于旋转平均补偿算法的旋转非对称面形绝对检测 被引量:8

Absolute Testing of Rotationally Asymmetric Surface Deviation with the Method of Rotation-Averaging and Compensation
原文传递
导出
摘要 旋转法是一种用于获得被测面旋转非对称面形的绝对检测技术。旋转平均补偿算法是在N次等间隔旋转的基础上增加一次不同角度的旋转测量,称为N+1次旋转法。通过附加的一次旋转测量,采用泽尼克多项式拟合求解旋转平均法的丢失面形。推导了理论计算公式,仿真分析了存在旋转角度和偏心误差时,补偿算法的有效性以及附加旋转角度对补偿面形计算精度的影响。验证实验的结果与仿真相符,表明在选择合适的附加角度之后,该算法可有效补偿丢失信息。与旋转平均法相比,只需增加一次旋转,就能得到更完整的面形,极大地提高了检测效率和精度,实验中补偿率达到61%,检测精度提高了约1倍。 The rotation method is an absolute testing to obtain rotationally asymmetric surface.A compensation method based on rotation-averaging needs a different rotation measurement besides N equally spaced azimuthal measurements,which is called N +1 rotation method.The losing surface of rotation-averaging method can be obtained with the additional measurement data and Zernike polynomial fitting.The theoretical formulas are derived and the validity of compensation method is simulated.The impact of additional rotation angle on algorithm accuracy is presented.The experimental result is consistent with simulation very well which proves that the losing surface can be compensated effectively by this method with an appropriate angle.Compared with the rotation-averaging method,this method can greatly improve the testing efficiency and accuracy by just adding one additional measurement.The compensation ratio is 0.61 and the accuracy is improved by a factor of 1.
出处 《中国激光》 EI CAS CSCD 北大核心 2014年第7期216-221,共6页 Chinese Journal of Lasers
基金 国家科技重大专项(2009ZX02205)
关键词 测量 误差补偿 旋转平均法 旋转非对称面形 绝对检测 measurement error compensation rotation-averaging method rotationally asymmetric surface absolute testing
  • 相关文献

参考文献13

  • 1Evans C J,Kestner R N.Test optics error removal[J].App Opt,1996,35(7):1015-1021.
  • 2Wang W,Tan J,Wang T,et al.Reference surface calibration of a Fizeau interferometer through even/odd synthesis[J].Appl Opt,2011,50(20):3482-3487.
  • 3Parks R E.A practical implementation of the random ball test [ C ].Optical Fabrication and Testing Rochester,2006.OFMC12.
  • 4Bloemhof E E.Absolute surface metrology by differencing spatially shifted maps from a phase-shifting interferometer[J].Opt Lett0 2010,35(14):2346-2348.
  • 5林维豪,罗红心,宋丽,张翼飞,王劼.同步辐射用光学元件面形绝对检测方法的研究[J].光学学报,2012,32(9):130-136. 被引量:8
  • 6Otto W.Method for the Interferometric Measurement of Non-Rotationally Symmetric Wavefront Errors:America,Patent 6839143[P].[2005-01-04].
  • 7杨鹏,伍凡,侯溪.旋转非对称项面形误差绝对检测的仿真分析[J].光电工程,2011,38(1):93-97. 被引量:10
  • 8宋伟红,伍凡,侯溪.基于单次旋转的旋转非对称面形误差绝对检测技术研究[J].光学学报,2012,32(8):105-110. 被引量:8
  • 9Kim S W,Rhee H G,Kim B C.Arbitrary N-step algorithm for removal of higher order test optics errors [C].14th Annual Meeting of the American-Society-for-Precision Engineering Monterey,1999.432-435.
  • 10W Song,F Wu,X Hou.Method to test rotationally asymmetric surface deviation with high accuracy[J].Appl Opt,2012,51(22):5567-5572.

二级参考文献59

  • 1徐晨,陈磊.光学平面绝对检验方法的研究[J].光学技术,2006,32(5):775-778. 被引量:15
  • 2Ulf Griesmann, Quandou Wang, Johannes Soons, et al. A simple ball average for reference sphere calibrations [J]. Proc. of SPIE(S0277-786X), 2005, 5869: 58690S: 1-8.
  • 3Bruce E Truax. Absolute interferometric testing of spherical surface [J]. Proc. of SPIE(S0277-786X), 1990, 1400: 61-68.
  • 4Katherine Creath, James C Wyant. Absolute measurement of spherical surface [J]. Proe. of SPIE(S0277-786X), 1990, 1332: 1-7.
  • 5Karl-Edmund Elssner, Burow R, Grzanna J, et al. Absolute spherical, measurement [J]. Appl.Opt(S2155-3165), 1989, 28(21): 4649-4661.
  • 6Katherine Creath, James C Wyant. Testing spherical surfaces: a fast, quasi-absolute technique [J]. Appl.Opt(S2155-3165), 1992, 31(22): 4350-4354.
  • 7Otaki K, Yamamoto T, Fukuda Y, et al. Accuracy evaluation of the point diffraction interferometer for extreme ultraviolet lithography aspheric mirror [J]. American Vacuum Society(S1064-3745), 2002, B20(1): 295-300.
  • 8Klaus Mantel, Eduard Geist, Irina Harder, et al. Interferometric quasi-absolute tests for aspherics [J]. Optics Letters(S1539-4794), 2009, 34(20): 3178-3180.
  • 9Chris J Evans, Robert N Kestner. Test optics error removal [J]. Appl.Opt(S2155-3165), 1996, 35(7): 1015-1021.
  • 10Michael F Ktichel. A new approach to solve the three flat problem [J]. Optik(S0030-4026), 2001, 9: 381-391.

共引文献34

同被引文献78

  • 1雷江,蒋世磊,程刚.高精度光刻物镜的变形研究[J].光电工程,2005,32(2):12-14. 被引量:7
  • 2张德江,刘立人,徐荣伟,李大汕.透镜自重变形引起波像差的有限元分析[J].光学学报,2005,25(4):538-541. 被引量:24
  • 3徐晨,陈磊.光学平面绝对检验方法的研究[J].光学技术,2006,32(5):775-778. 被引量:15
  • 4张军强 董得义 吴清文等.光学遥感器镜面面形误差及刚体位移处理方法.仪器仪表学报,2011,32:242-247.
  • 5谭凡教,乔彦峰,李耀斌,高慧斌,于帅北.光电经纬仪主镜系统自重变形的有限元分析[J].光学仪器,2007,29(6):65-68. 被引量:4
  • 6Malvick A J. Theoretical elastic deformations of the steward observatory 230 cm and the optical sciences center 154 cm mirrors[J]. Appl Opt, 1972, 11(3): 575-585.
  • 7P R Yoder. Opto-Mechanical Systems Design[M]. Boca Raton:The Chemical Rubber Company Press, 2006: 460-461.
  • 8Cho M K,Price R S,Moon I K. Optimization of the ATST primarymirror support system[C]. SPIE, 2006, 6273: 63731E.
  • 9Slocum A. Kinematics couplings are view of design principles and application[J]. Int J Mach Tools & Manuf, 2010, 50(4): 310-327.
  • 10胡企千.大型光学镜子的结构、支撑及重力变形计算方法[J].光学机械, 1983, 17(6): 29-44.

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部