摘要
A solid-state thermoelectric refrigerator with a cylindrical InP/InAs/InP double-barrier heterostructure is proposed. Based on the ballistic electron transport and the asymmetrical transmission, we derive the expressions of the performance parameters of this refrigerator. The cooling rate rather than the coefficient of performance is affected by the area of the inner cylinder. Then through the numerical simulation, a triangular cooling rate region is found with respect to the chemical potential and bias voltage; further, that it is because of the small full width at half maximum of the transmission resonance and the linear relationship between the energy position of resonance and the bias voltage. These tunable results might supply some guide to the cooling in tiny components or devices.
A solid-state thermoelectric refrigerator with a cylindrical InP/InAs/InP double-barrier heterostructure is proposed. Based on the ballistic electron transport and the asymmetrical transmission, we derive the expressions of the performance parameters of this refrigerator. The cooling rate rather than the coefficient of performance is affected by the area of the inner cylinder. Then through the numerical simulation, a triangular cooling rate region is found with respect to the chemical potential and bias voltage; further, that it is because of the small full width at half maximum of the transmission resonance and the linear relationship between the energy position of resonance and the bias voltage. These tunable results might supply some guide to the cooling in tiny components or devices.
基金
Project supported by the Fundamental Research Funds for the Central Universities and the Research and Innovation Project for College Graduates of Jiangsu Province,China(Grant No.CXZZ13 0081)