期刊文献+

A new kind of superimposing morphology for enhancing the light scattering in thin film silicon solar cells: Combining random and periodic structure

A new kind of superimposing morphology for enhancing the light scattering in thin film silicon solar cells: Combining random and periodic structure
下载PDF
导出
摘要 In this article, a new type of superimposing morphology comprised of a periodic nanostructure and a random structure is proposed for the first time to enhance the light scattering in silicon-based thin film solar cells. According to the framework of the Reyleigh-Sommerfeld diffraction algorithm and the experimental results of random morphologies, we analyze the light-scattering properties of four superimposing morphologies and compare them with the individual morphologies in detail. The results indicate that the superimposing morphology can offer a better light trapping capacity, owing to the coexistence of the random scattering mechanism and the periodic scattering mechanism. Its scattering property will be dominated by the individual nanostructures whose geometrical features play the leading role. In this article, a new type of superimposing morphology comprised of a periodic nanostructure and a random structure is proposed for the first time to enhance the light scattering in silicon-based thin film solar cells. According to the framework of the Reyleigh-Sommerfeld diffraction algorithm and the experimental results of random morphologies, we analyze the light-scattering properties of four superimposing morphologies and compare them with the individual morphologies in detail. The results indicate that the superimposing morphology can offer a better light trapping capacity, owing to the coexistence of the random scattering mechanism and the periodic scattering mechanism. Its scattering property will be dominated by the individual nanostructures whose geometrical features play the leading role.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期350-356,共7页 中国物理B(英文版)
基金 Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00705, 2011CBA00706, and 2011CBA00707), the National Natural Science Foundation of China (Grant No. 61377031), the Natural Science Foundation of Tianjin, China (Grant No. 12JCQNJC01000), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20120031120044), and the Fundamental Research Funds for the Central Universities, China (Grant No. 65012371).
关键词 light scattering superimposing morphology RANDOM PERIODIC light scattering, superimposing morphology, random, periodic
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部