摘要
在下层初始随机规划问题可行解集上引入了正则的概念,并在下层初始随机规划最优解唯一的条件下,利用上图收敛理论,给出了下层随机规划逼近问题的任意一个最优解向量函数都连续收敛到下层初始随机规划问题的唯一最优解向量函数.然后将下层随机规划的最优解向量函数反馈到上层随机规划的目标函数和约束条件中,得到了上层随机规划逼近问题的最优解集关于最小信息概率度量收敛的上半收敛性.
In this paper, we define the concept of regularity of feasible set for lower level original stochastic programming. If optimal solution set for lower level original stochastic programming is a set of single points, by using the epi-convergence theory, we show that any optimal solution vector function for lower level stochastic programming approximation problem converges continuously to the unique optimal solution vector function for lower level original stochastic programming: Furthermore,if objective function and constraint conditions of upper level stochastic programming contain optimal solution vector function of lower level stochastic programming, if probability measure sequence is convergence, we obtain the upper semi-convergence of optimal solution set for upper level stochastic programming in minimal information probability metric.
出处
《系统科学与数学》
CSCD
北大核心
2014年第6期674-681,共8页
Journal of Systems Science and Mathematical Sciences
基金
重庆高校创新团队建设计划项目(KJ301321)
国家自然科学基金(71271227)资助课题
关键词
二层随机规划
正则条件
最小信息概率度量
最优解集
上半收敛性
Bilevel stochastic programming, regularity condition, minimal informa- tion (m.i.) probability metric, optimal solution set, upper semi-convergence.