期刊文献+

4-带紧支对称小波框架的构造 被引量:2

CONSTRUCTION OF 4-BAND COMPACTLY SUPPORTED SYMMETRIC WAVELET FRAME
原文传递
导出
摘要 通过研究M-带对称尺紧支度滤波器的分解形式,得到了一种简单的构造方法.特别地,给出了4-带对称紧支尺度滤波器的构造方法.然后基于酉扩充原则构造了一类4-带紧支对称小波框架系统,利用这种系统可以得到彭立中等(2004)介绍的具有优美结构的小波. By studying the factorization metric scaling filter, a simple method of of the M-band compactly supported symconstruction is gained. Particularly, the 4-band compactly supported symmetric scaling filter is constructed. Then, the 4- band compactly supported symmetric wavelet frame system are given with the UEP. Based on this system, the beautiful structure wavelet which introduced by Peng, et al. (2004) is obtained.
作者 陈勇 王国秋
出处 《系统科学与数学》 CSCD 北大核心 2014年第6期718-723,共6页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(11101001)资助课题
关键词 小波框架 尺度滤波器 小波滤波器 Wavelet frame, scaling filter, wavelet filters
  • 相关文献

参考文献1

二级参考文献8

  • 1[1]Daubechies, I., Orthonormal bases of compact supported wavelets, Comm. Pure and Appl. Math., 1988, 41:909-996.
  • 2[2]Daubechies, I., Ten Lectures on Wavelets, Philadelphia, PA: SIAM, 1992.
  • 3[3]Steffen, P., Heller, P., Gopinath, R. A. et al., Theory of regular M-band wavelet bases, IEEE. Trans. on Signal Processing, 1993, 41:3497-3511.
  • 4[4]Chui, C., Lian, J. A., Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale=3, Appl. Comput. Harmon. Anal., 1995, 2: 68-84.
  • 5[5]Belogay, E., Wang, Y., Compactly supported orthogonal symmetric scaling functions, Appl. Comput. Harmon.Anal., 1999, 7: 137-150.
  • 6[6]Jawerth, B., Peng Lizhong, Compactly supported orthogonal wavelets on the Heisenberg group, Research report No. 45 (2001).
  • 7[7]Riemenschneider, S. D., Shen Zuowei, Wavelets and pre-wavelets in low dimensions, J. Approximation Theory,1992, 71: 18-38.
  • 8[8]Heller, P. N., Resnikoff, H. L, Wells, Jr. R. O., Wavelet Matrices and the Representation of Discrete Functions:A Tutorial in Theory and Applications, Cambridge, MA: Academic Press, 1992, 15-50.

共引文献8

同被引文献14

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部