期刊文献+

Practical high-speed light source for decoy-state quantum key distribution 被引量:1

Practical high-speed light source for decoy-state quantum key distribution
原文传递
导出
摘要 High-speed light source is realized for decoy-state quantum key distribution (QKD) at telecom wavelength of 1.55 ttm. By implementing two different electrical pulses together and triggering with 100 MHz pseudo- random number to drive the laser diode, the signal-state and the decoy-state pulses are prepared with identical pulse duration of 25 ps and similar spectral characteristics, avoiding the eavesdropper's attack by temporal and spectral analysis. The intensity fluctuation of the light source is quantified to satisfy the practical decoy-state QKD with random intensity error. The characteristics of the light source are analyzed with a high-speed single-photon detector. High-speed light source is realized for decoy-state quantum key distribution (QKD) at telecom wavelength of 1.55 ttm. By implementing two different electrical pulses together and triggering with 100 MHz pseudo- random number to drive the laser diode, the signal-state and the decoy-state pulses are prepared with identical pulse duration of 25 ps and similar spectral characteristics, avoiding the eavesdropper's attack by temporal and spectral analysis. The intensity fluctuation of the light source is quantified to satisfy the practical decoy-state QKD with random intensity error. The characteristics of the light source are analyzed with a high-speed single-photon detector.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2014年第7期67-70,共4页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.61127014 and 91221304) the National Key Scientific Instrument Project of China(No.2012YQ150092) the Natural Science Foundation of Shanghai(No.11ZR1410900)
关键词 Particle beams Quantum cryptography Spectrum analysis Particle beams Quantum cryptography Spectrum analysis
  • 相关文献

参考文献34

  • 1N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
  • 2P. Shor and J. Preskill, Phys. Rev. Lett. 85, 441(2000).
  • 3C. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing 175, 150 (1984).
  • 4C. Bennett, Phys. Rev. Lett. 68, 3121 (1992).
  • 5A. Ekert, Phys. Rev. Lett. 67, 661 (1991).
  • 6J. Chen, G. Wu, Y. Li, E. Wu, and H. Zeng, Opt. Ex- press 15, 17928 (2007).
  • 7Y. Zhang, W. Chen, S. Wang, Z. Yin, F. Xu, X. Wu, C. Dong, H. Li, G. Guo, and Z. Han, Opt. Lett. 35, 3393 (2010).
  • 8R. Hughes, G. Morgan, and C. Peterson, J. Mod. Opt. 47, 533 (2000).
  • 9Z. Zhao, Y. Luo, Z. Zhao, and H. Long, Chin. Opt. Lett. 9, 032702 (2011).
  • 10H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuehizawa, T. Watanabe, K. Yamada, and S. Itahashi, Opt. Express 18, 16777 (2010).

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部