期刊文献+

MEMS F-P干涉型压力传感器 被引量:15

MEMS F-P interferometry pressure sensor
下载PDF
导出
摘要 为了满足工业、航天、国防等领域对微型化压力传感器的需求,提出了基于微机电系统(MEMS,Micro electromechanical System)技术制作的非本征型光纤法布里-珀罗(F-P)压力传感器,该传感器传感头由全玻璃材料构成。主要研究了MEMS技术制作全玻璃结构式压力传感器工艺,结合溅射、光刻、腐蚀等工艺在7740 wafer基底上制作出F-P腔体,利用低压化学气相沉积(LPCVD)的方法在基底上沉积一层40 nm的非晶硅作为中间层。通过阳极键合技术在温度400℃下完成玻璃与玻璃的键合,并搭建了该传感器的压力测量平台。实验结果表明:在压力线性范围0-400 kPa内传感器具有很高的重复性,达到0.3%。灵敏度达到1.764 nm/kPa;在传感器使用范围0-80℃内,热敏感系数为0.15 nm/℃。该传感器的研究对设计制作改善了该类传感器的热膨胀失配问题,对低温漂型压力传感器的研究有一定参考价值。 In order to meet the requirements of industry, aerospace and defense for miniature pressure sensors, an optical F-P interferometry pressure sensor which was made from all-glass material was presented, the sensor head of which was made from all-glass material. The processing steps of MEMS craft for fabrication of the all-glass optical pressure sensor were studied mainly , F-P cavity was made on 7 740 wafer based on sputtering, photolithography and etching technology, a 40 nm thick amorphous silicon layer deposited by low-pressure chemical vapor deposition (LPCVD) on this wafer was used as an intermediate layer. Then glass-to-glass anodic bonding was finished under the temperature of 380° . Finally, the pressure measurement system was established. The experiment result shows that a high repeatability in the range of 0-400 kPa pressure and a reasonable sensitivity of 1 . 764 nm/kPa have been obtained in this pressure sensor . The temperature-sensitivity coefficient of the sensor was about 0 . 15 nm/℃ in the range of 0-80℃. The study of the pressure sensor would be of utility value for design and fabrication of low temperature drift typed pressure sensor.
出处 《红外与激光工程》 EI CSCD 北大核心 2014年第7期2257-2262,共6页 Infrared and Laser Engineering
基金 福建省自然科学基金(2013J01251)
关键词 光纤传感器 MEMS 全玻璃材料 F—P腔制作 optical sensor MEMS all-glass material fabrication of F-P cavity
  • 相关文献

参考文献3

二级参考文献32

  • 1乐孜纯.微弯光纤压力传感器应变膜片研究[J].光学精密工程,1994,2(3):41-47. 被引量:6
  • 2祝宇虹,纪军红,孙宁.桥式硅压阻器件在气压测量中的应用[J].传感器技术,2005,24(5):74-76. 被引量:7
  • 3YOON W K, DEVANEY M J. Reactive power measurement using the wavelet transform [J].IEEE Transactions on Instrumentation and Measurement.2000,49:246-252.
  • 4SARKAR A, SENGUPTA S. A low-cost fault-tolerant real, reactive, and apparent power measurement technique using microprocessor [J]. IEEE Transactions on Instrumentation and Measurement.2007, 56:2672-2680.
  • 5HILL K O, MELTZ G. Fiber Bragg grating technology fundamentals and overview [J].J. Lightwave Technol.1997,15:1263-1276.
  • 6KERSEY A D, DAVIS M A, PATRICK H J, et al.. Fiber grating sensors [J].J. Lightwave Technol.1997,15:1442-1463.
  • 7CHENG C H, CHEN M H, LIU W F, Measurement of AC current using a superstructure fiber grating [J]. Microwave and Optical Technology Letters, 2008, 50:1168-1171.
  • 8CHENG C H, LIN L M, LIU W F. Measurement of electric power using an optical fiber grating [J]. Microwave and Optical Technology Letters,2009,51(10):2438-2441.
  • 9JUNG J, NAM H, LEE J H, et al.. Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier [J]. Appl. Opt., 1999,38(13):2749-2751.
  • 10JAMES S W, DOCKNEY M L, TATAM R P. Simultaneous independent temperature and strain measurement using in-fiber Bragg grating sensors [J].Electron. Lett.1996, 32:1133-1134.

共引文献52

同被引文献86

引证文献15

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部