摘要
本文研究由逆平均曲率加上一个常量支配的星形超曲面的发展运动.首先,我们利用曲面的星形性质给出了流的等价同解方程,由此给出了流的短时间存在结果.接着,我们给出了流在特殊外力项下的梯度估计,并同时证明在这个外力场下,曲面的星形性质是保持的.
In this paper,we mainly study the evolution of star-shaped hypersurface by inverse mean curvature minus a constant.We assume the initial hypersurface is star-shaped with respect to the origin.By expressing the position vector by a positive function,we get an equivalent single equation of the evolution equation,from which we obtain the shorttime existence of the flow.And we also obtain that the hypersurface is still star-shaped during the flow when the constant is non-positive.Under the condition that the constant is non-positive,we study the equivalent equation.We obtain the maximum estimate and gradient estimate,and prove that the maximum and the gradient are determined by the initial data.The method we use here is mainly Hamilton's maximum principle and the idea is from Urbas who gave the same results for inverse mean curvature flow.
出处
《应用数学学报》
CSCD
北大核心
2014年第4期621-628,共8页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(No.11201011)
北京市自然科学基金(No.1132002)
北京市属高等学校高层次人才引进与培养计划(No.CIT&TCD201304029)
北京市组织部优秀人才(No.2012D005003000004)资助项目
关键词
几何发展方程
逆平均曲率流
梯度估计
geometric evolution
inverse mean curvature flow
gradient estimates
estimating equation