期刊文献+

广义凸空间上重合点定理,几乎不动点定理和不动点定理 被引量:2

Coincidence Point Theorems,Almost Fixed Point Theorems,Fixed Point Theorems on Generalized Convex Spaces
原文传递
导出
摘要 引进了广义凸空间上关于某一映射的广义S-KKM映射和广义W-S-KKM映射的概念,得到了广义凸空间上的连续选择定理和Fan-Browder型不动点定理并给出两个φ-映射的重合点存在定理.最后,讨论了具有S-KKM性质或具有W-S-KKM性质的映射的几乎不动点和不动点的存在问题.所的结论推广和改进了一些已有的结果. The concepts of a generalized S-KKM map and a generalized W-S-KKM map with respect to another map on generalized convex spaces are introduced,continuous selection theorems and Fan-Browder type fixed point theorems are also obtained in this space,and from which,the existence theorems of coincidence points for two Φ-maps are given.Finally,the existence problems of almost fixed points and fixed points for maps with S-KKM property or W-S-KKM property are discussed.The obtained results generalize and improve many known conclusions.
作者 朴勇杰
出处 《应用数学学报》 CSCD 北大核心 2014年第4期724-734,共11页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11261062:11361064) 吉林省教育厅"十二五"科学技术研究([2011]No.434)资助项目
关键词 Φ-映射 类W-S-KKM(X、Y、D、Z) 重合点 不动点 几乎不动点性质 Φ-mapping class W-S-KKM(X,Y,D,Z) coincidence point fixed point the almost fixed point property
分类号 O [理学]
  • 相关文献

参考文献4

二级参考文献18

  • 1刘心歌,蔡海涛.H-空间与拟向量变分不等式(英文)[J].数学理论与应用,2004,24(3):1-5. 被引量:5
  • 2[1]Park Sehie. New Subclasses of Generalized Concex Spaces[J]. Fixed Point Theory and Applications (Y J Cho, ed. ), Nova Sci Publ, New-York, 2000. 91 - 98.
  • 3[2]Lassonde M. On the Use of KKM Multimaps in Fixed Point Theory and Related Topics[J]. J Math Anal Appl, 1983,97:151 - 201.
  • 4[3]Horvath C D. Contractibility and Generalized Convexity[J]. J Math Anal Appl, 1991,156:341 - 357.
  • 5[4]Tan K K, Zhang X L. Fixed Point Theorems on G- convex Spaces and Applications[J]. Nonlinear Funct Anal Appl, 1996, (1) :1 - 19.
  • 6[5]Kim W K. Some Applications of Kakutani Fixed Point Theorem[J]. J Math Anal Appl, 1987,121:119 - 122.
  • 7[6]Shih M H, Tan K K. Covering Theorems of Convex Sets Related to Fixed Point Theorems[J]. Nonlinear and Convex Analysis(Proc. in honor of Ky Fan), Marcaldekker Inc, New-York and Basel,1987. 235-244.
  • 8[7]Park Sehie, Lee W B. A Unified Approach to Generalized KKM Maps in Generalized Convex Spaces[J]. J Nonlinear and Convex Anal, 2001,2.
  • 9[8]Park Sehie. Elements of the KKM Theory for Generalized Convex Spaces [ J ] Korean J Comp Appl Math, 2000,7:1 - 28.
  • 10Chang T H,J Math Anal Appl,1999年,229卷,212页

共引文献11

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部