摘要
Human dental hard tissues are dentine, cementum, and enamel. These are hydrated mineralised composite tissues with a hierarchical structure and versatile thermo-mechanical properties. The hierarchical structure of dentine and enamel was imaged by transmission electron microscopy (TEM) of samples prepared by focused ion beam (FIB) milling. High resolution TEM was carried out in the vicinity of a crack tip in dentine. An intricate "random weave" pattern of hydroxyapatile crystallites was observed and this provided a possible explanation for toughening of the mineralized dentine tissue at the nano-scale. The results reported here provide the basis for improved understanding of the rela- tionship between the multi-scale nature and the mechanical properties of hierarchically structured biomaterials, and will also be useful for the development of better prosthetic and dental restorative materials.
Human dental hard tissues are dentine, cementum, and enamel. These are hydrated mineralised composite tissues with a hierarchical structure and versatile thermo-mechanical properties. The hierarchical structure of dentine and enamel was imaged by transmission electron microscopy (TEM) of samples prepared by focused ion beam (FIB) milling. High resolution TEM was carried out in the vicinity of a crack tip in dentine. An intricate "random weave" pattern of hydroxyapatile crystallites was observed and this provided a possible explanation for toughening of the mineralized dentine tissue at the nano-scale. The results reported here provide the basis for improved understanding of the rela- tionship between the multi-scale nature and the mechanical properties of hierarchically structured biomaterials, and will also be useful for the development of better prosthetic and dental restorative materials.
基金
supported by EPSRC through grants"Multi-disciplinary Centre for In-situ Processing Studies(CIPS)"(EP/I020691),"Micromechanical Modelling and Experimentation"(EP/G004676),and "New Dimensions of Engineering Science at Large Facilities"(EP/H003215)