期刊文献+

基于压缩感知的正则化子空间追踪算法 被引量:1

Regularized Subspace Pursuit Based on Compressive Sensing
下载PDF
导出
摘要 压缩感知理论是一种新的在采样的同时实现压缩的采样过程,只要被采样信号是稀疏或可压缩的,就可以保证精确重建。通过研究总结已有的贪婪追踪类重建算法,提出了一种正则化子空间追踪算法(Regularized Subspace Pursuit,RSP)。正则化正交匹配追踪算法(Regularized Orthogonal Matching Pursuit,ROMP)的正则化方法对原子的能量分级思想,对信号的重建精度和重建速度有很大影响。首先对该方法的不合理性进行改进,然后将改进的正则化步骤引入到子空间追踪算法(Subspace Pursuit,SP)中,最终达到对原始信号的快速精确重建。实验仿真表明,该算法比SP算法更高效,更具有实际应用意义。 Compressive sensing theory is a new methodology to achieve compression while sampling. The sampled signal is reconstructed as long as the signal is sparse or compressible. Based on the research and summarization of the existing greedy pursuit algorithms, this paper presents a new Regularized Subspace Pursuit (RSP). The idea of atomic energy classification of regularization method in Regularized Orthogonal Matching Pursuit (ROMP) has great influence on the accuracy and speed of the signal reconstruction. Firstly, the irrationality of this method is improved, and then this improved method is introduced to Subspace Pursuit (SP) ultimately leads to exact and fast reconstruction of the original signal. The experimental results show that RSP is more efficient and practical significance than SP.
出处 《电视技术》 北大核心 2014年第15期20-23,83,共5页 Video Engineering
关键词 压缩感知 正则化 匹配追踪 重建算法 compressive sensing regularized matching pursuit reconstruction algorithm
  • 相关文献

参考文献16

  • 1CANDES E, ROMBERG J, TAO T. Robust uncertainty principles : exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans. Information Theory,2006,52(2) :489-509.
  • 2DONOHO D. Compressed sensing[ J]. IEEE Trans. Information Theory, 2006,52(4) : 1289-1306.
  • 3李然,干宗良,崔子冠,朱秀昌.压缩感知图像重建算法的研究现状及其展望[J].电视技术,2013,37(19):7-14. 被引量:11
  • 4CHEN S, DONOHO D, SAUNDERS M. Atomic decomposition by basis pursuit[ J]. SIAM Journal of Scientific Computing, 1998,20( 1 ) :33-61.
  • 5JOHNSON C,SEIDEL J,SOFER A. Interior point methodology for 3-D PET reconstruction [ J ]. IEEE Trans. Medical Imaging, 2000,19 (4) : 271-285.
  • 6FIGUEIREDO M, NOWAK R, WRIGHT S. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse prob- lems [ J ]. IEEE Journal of Selected Topics in Signal Processing, 2007 (4) :586-597.
  • 7MALLAT S,ZHANG Z. Matching pursuits with time-frequency dictiona- ries[J]. IEEE Trans. Signal Processing,1993,41 (12) :3397-3415.
  • 8TROPP J, GILBERT A. Signal recovery from random measurements via orthogonal matching pursuit [ J ]. IEEE Trans. Info. Theory, 2007,53 (12) :4655-4666.
  • 9NEEDELL D,VERSHYNIN R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [ J ]. Foundations of Comp. Math. ,2000,9(3) :317-334.
  • 10NEEDELL D,TROPP J. CoSamp:iterative signal recovery from incom-plete and inaccurate samples [ J ]. Applied and Comput. Harmon. A- nal. ,2009,26(3) :301-321.

二级参考文献43

  • 1RICHARD G. Compressive sensing [J]. IEEE Signal Processing Maga- zine,2007,24(4) : 118-121.
  • 2CANDES E, WAKIN M. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine,2008,25 (2) :21-30.
  • 3DUARTE M,DAVENPORT M, TAKHAR D, et al. Single-pixel imaging via compressive sampling[ J]. IEEE Signal Processing Magazine ,2008,25 (2) :83-92.
  • 4GAN L. Block compressed sensing of natural images[ C]//Proc. Interna- tional Conference on Digital Siagnal Processing. Cardiff, UK :IEEE Press, 2007:403-406.
  • 5DO T,GAN L,NGUYEN N,et al. Fast and efficient compressive sensing using structurally random matrices [ J ]. IEEE Trans. Signal Processing, 2012,60( 1 ) : 139-154.
  • 6CANDES E, ROMBERG T,TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [ J]. IEEE Trans. Information Theory ,2006,52 (2) :489-509.
  • 7CANDES E, ROMBERG J ,TAO T. Stable signal recovery from incomplete and inaccurate measurements [ J]. Communications on Pure and Applied Mathematics ,2006,59(8 ) : 1207-1223.
  • 8DONOHO D. Compressed sensing [J ]. IEEE Trans. Information Theory, 2006,52(4) : 1289-1306.
  • 9CANDES E, ROMBERG J. Practical signal recovery from random projec- tion [ C ]//Proc. SPIE Computational Imaging. [ S. 1. ] : IEEE Press, 2005:76-86.
  • 10ELAD M. Sparse and redundant representations [ M ]. New York:Spring- er Science + Business Media, LLC ,2010.

共引文献10

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部