期刊文献+

针对监控视频场景的压缩域运动对象分割方法 被引量:1

Object Segmentation Method in Compressed Domain for Surveillance Video Scene
下载PDF
导出
摘要 提出了一种压缩域背景建模与运动对象分割框架:首先提取H.264视频压缩码流中的MB-bits与4×4块残差系数,基于MB-bits场进行压缩域Vibe背景建模分割出宏块级运动对象区域,然后结合最大熵模型提取4×4边缘块进行运动对象轮廓细化最终分割出压缩域运动对象。试验对比分析表明,提出的算法能快速、准确地提取压缩域运动对象,系统具有一定鲁棒性。 A compressed domain based scheme is proposed to model background and segment moving objects in this paper. First of all,the size in bits that a macroblok MB occupies(MB-bits) and 4 ×4 residual coefficients within such a MB are extracted from the compressed bitstream,based on MB-bits field in compressed domain Vibe background modeling is build to segment moving object in MB level. Then combining maximum entropy model to refine object contour by extracting edge of 4 × 4 block, and finally segment moving object in compressed domain. Experimental comparison and analysis show that the proposed algorithm can extract the compressed domain motion object rapidly and accurately with certain robustness.
出处 《电视技术》 北大核心 2014年第15期24-28,共5页 Video Engineering
关键词 压缩域 背景建模 运动对象分割 最大熵 compressed domain background modeling moving object segmentation maximum entropy
  • 相关文献

参考文献10

  • 1BABU R,RAMAKRISHNAN K,SRINIVASAN S. Video object segmen- tation :a compressed domain approach[ J]. IEEE Trans. Circuits and Sys- tems for Video Technology,2004,14(4) :462-474.
  • 2WANG R, ZHANG H, ZHANG Y. A confidence measure based moving object extraction system built for compressed domain [ C ]//Proc. ISCAS 2000. Geneva: IEEE Press ,2000:21-24.
  • 3ZEN H, HASEGA T, OZAWA S. Moving object detection from MPEG co- ded picture [ C ]//Proc. ICIP 1999. Kobe : IEEE Press, 1999:25 -29.
  • 4ZENG W,DU J,GAO W,et al. Robust moving object segmentation on H. 264/AVC compressed video using the block - based MRF model [ J ]. Real-Time Imaging,2005,11 ( 4 ) :290-299.
  • 5CHEN Y,BAJIC I. A joint approach to global motion estimation and motion segmentation from a coarsely sampled motion vector field [ J ]. IEEE Trans. Circuits and Systems for Video Technology, 2011,21 (9) :1316-1328.
  • 6CHEN Y, BAJIC I, SAEEDI P. Moving region segmentation from com- pressed video using global motion estimation and markov random fields [J]. IEEE Trans. Muhimedia,2011,13(3) :421-431.
  • 7CHEN Y, BAJIC I,SAEEDI P. Motion segmentation in compressed video using markov random fields [ C ]//Prec. IEEE ICME 2010. [ S. 1. ] : Press ,2010:760-765.
  • 8WANG T,LIANG J,WANG X,et al. Background modeling using local binary patterns of motion vector[ C ]//Proc. VCIP 2012. San Diego, CA: 1EEE Press ,2012 : 1-5.
  • 9毕厚杰,王健.新一代视频压缩编码标准-H.264/AVC[M].2版.北京:人民邮电出版社,2009.
  • 10LIN C, YU C. Image segmentation based on maximum entropy and ker- nel self-organizing map[ C ]//Proc. S-CET 2012. Xi' an:IEEE Press, 2012:1-4.

共引文献5

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部