期刊文献+

一种基于核函数的各向异性扩散图像去噪算法 被引量:1

Image Denoise Model Based on Kernel Anisotropic Diffusion
下载PDF
导出
摘要 分析了各向异性扩散去噪模型优缺点,针对PM模型不能有效区分噪声和边缘,提出了一种基于核函数的各向异性扩散去噪模型。在该模型中,把图像中噪声与边缘在低维空间的非线性区分关系转变为高维特征空间的线性关系,利用核函数获得高维空间的扩散函数。实验中分别与PM模型、Cattle模型比较分析,证明基于核函数的扩散模型在去除噪声的同时,更好地保留图像的信息,且峰值信噪比最高,去噪性能最优。 Through discussing the characteristics of the anisotropic diffusion model,a novel kernel anisotropic diffusion model is proposed to overcome conventional anisotropic diffusion that fails to discriminate between noise and edges. This novel model transforms the image into a feature space with high dimensionality, so the nonlinearly separable patterns of edges and noise are linearly separable in the high dimensionality, then incorporates a kernelized gradient operator to obtain diffusion function. Compare to PM model and Cattle model, numerical experiments results show the kernal diffusion model can remove the noise while preserving more image details and gain higher peak signal-noise ratio, has good performance in image denoising.
出处 《电视技术》 北大核心 2014年第15期68-70,101,共4页 Video Engineering
基金 人工智能四川省重点实验室开放基金项目(2012RYY08) 四川理工学院校级科研基金项目(2012KY13) 四川省教育厅项目(14ZB0211 14ZA0202) 四川理工学院教学改革项目(JG-1202)
关键词 图像去噪 各向异性扩散 核函数 高维空间 image denoising anisotropic diffusion kernel function high dimension
  • 相关文献

参考文献11

  • 1PERONA P,MALI J. Scale- space and edge detection using anisotropic diffusion[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1990,12(7) :629-639.
  • 2CAqTE F,LIONS P L,MOREL J M,et al. Image selective smoothing and edge detection by nonlinear diffusion [ J ], SIAM J. , 1992, 29, ( 1 ) : 182-193.
  • 3YOU Y, KAVEH M. Fourth-oMer partial differenti',d equations for noise removal[ J ]. IEEE Trans. Image Processing,2000,9(10) : 1723-1730.
  • 4GILBOA G, SOCHEN N, ZEEVI Y. Forward-and-backward diffusion processes for adaptive image enhaar:ement and denoising [ J ]. IEEE Trans. Image txam.essing,2002, 1 1 (7) :689-703.
  • 5陈明举,杨平先.一种非线性复扩散与冲击滤波的图像消噪方法[J].电视技术,2011,35(19):20-22. 被引量:9
  • 6ELMONIEM K Z,YOUSSEF A M,KADAH Y M. Real-time speckle re- duction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion[ J ]. IEEE Trans. Biomedical Engineering,2002,49 (9) :997-1014.
  • 7YU J ,TAN J ,WANG Y. Ultrasound speckle reduction by a SUSAN-con- trolled anisotropic diffusion method [ J ]. Pattern Recognition, 2010,43 (9) :3083-3092.
  • 8COVER T. Geometrieal and statistical properties of systems of linear in equalities with applieations in pattern recognition[ J]. IEEE Trans. Image Processing, 1965,14 ( 5 ) : 326-334.
  • 9IKEDA K. Effects of kernel function on Nu support vector machines in extremeeases [ J ]. IEEE Trans. Image Processing,2006,17 ( 5 ) : 1-9.
  • 10LIU C. Galmr based kernel PCA with fractional power polynomial mod- els for face recognition[J]. IEEE Trans. Pattern Anal. Machine lntell, 2004(26) :572-581.

二级参考文献9

  • 1黄世国,耿国华.一种前后向复扩散图像增强算法[J].小型微型计算机系统,2007,28(3):530-532. 被引量:5
  • 2PERONA P,MALIK J. Scale-space and edge detection using anisotropie diffusion[J]. IEEE Trans. Pat. Anal. Machine Intel. ,1990,12(7): 629-639.
  • 3GILBOA G,SOCHEN N ,ZEEVI Y Y. Forward-and-back-ward diffusion processes for adaptive image enhancement and denoising [ J ]. IEEE Trans. Image Process. ,2002,11 (7) :689-703.
  • 4David L C. The role of phosphorus in the eutrophication of receiving water: a review[J]. J Environ Qaul, 1998, 27:261 - 266.
  • 5Sundby B, Gobeil C, Silberberg N. The phosphorus cycle in coastal marine sediments [ J ]. Limnology and Oceanography, 1992, 37 (6):1129 - 1145.
  • 6Slomp J F, Malschaert P, Raaphorst W V. The role of adsorption in sediment - water exchange of phosphate in north sea continental margin sediments[J]. Limnol Oceanogr, 1998, 43(5): 832 - 846.
  • 7Ku W C, Digiano F A, Feng T H. Factors affecting phosphate adsorption equilibria in lake sediments[J]. Water Res, 1978, 12:1069 - 1074.
  • 8Naomi E D, Partick L B. Phosphorus sorption by sediments from a soft -water seepage lake, 2 Effects of pH and sediment composition [J].Environ Sci Technol, 1991, 25(3): 403 -409.
  • 9谭勇,夏东坤,陈贤巧.结合迭代实边缘特性的图像复扩散增强算法[J].小型微型计算机系统,2009,30(6):1152-1154. 被引量:2

共引文献8

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部