期刊文献+

压缩感知信道估计中降低信道稀疏度的算法

Compressed Sensing Channel Estimation Algorithm in Lower Channel Sparseness Degree
下载PDF
导出
摘要 针对基于压缩感知的稀疏多径信道估计,提出了一种利用智能天线波束赋形改造多径信道,从而改选信道稀疏度的方法。与MIMO系统压缩感知相比,在利用OMP重构算法、获得同样估计性能的前提下,需要的导频数大大减少,这样就可以节省更大的空间来传送用户数据,提高了系统的吞吐量。仿真结果也证实了本文提出方法的优越性。 Based on compressed sensing sparse multipath channel estimation, a smart antenna beam forming is presented using the transformation of multipath channel and thus transform the channel sparsely approach. Compared with MIMO system compressed sensing, in the use of OMP reconstruction algorithm to obtain the same estimation performance ,the number of required pilot is greatly reduced. So that it can save more space to transfer user data to improve the system throughput. The simulation results also confirm that the proposed method is superior.
作者 龙恳 王真
出处 《电视技术》 北大核心 2014年第15期144-146,151,共4页 Video Engineering
基金 国家科技重大专项基金(2013ZX03003014-004)
关键词 压缩感知 信道估计 波束赋形 导频数 compressed sensing channel estimation beam forming pilots number
  • 相关文献

参考文献10

  • 1DONOHO D. Compressed sensing[J]. IEEE Trans. Inform. Theory, 2006,52(4) : 1289-136.
  • 2BARANIUK R Q. Compressive sensing [ J ]. IEEE Signal Processing Magazine, 2007, 24(4): 118-120.
  • 3王妮娜,桂冠,张治,等.基于压缩感知理论的无线多径信道估计方法研究[J].应用科学学报,2012(4):347-352.
  • 4TROPP J,GILLBERT A. Signal recovery from partial information by or- thognnal matching pursuit [ J]. IEEE Trans. Information Theory,2008, 53(12) :4655-4666.
  • 53GPP TS 25.996, Spatial channel model for MIMOsimulations [ S ]. 2003.
  • 6QI Chenghao, WU Lenan. A hybrid compressed sensing algorithm for sparse channel estimation in M[MO OFDM systems [ C ]//Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IS. 1. ] :IEEE Press,2011:3488-3491.
  • 7张宗念,黄仁泰,闫敬文.压缩感知信号盲稀疏度重构算法[J].电子学报,2011,39(1):18-22. 被引量:29
  • 8TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Tran. Information Theory, 2007,53(12) :4655-4666.
  • 9WANG Jian, SHIM Byonghyo. On the recovery limit of sparse signals using orthogonal [J]. IEEE Trans. Inf. Theory, 2012,60(9) :4973-4976.
  • 10TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [ J]. IEEE Trans. Inf. Theory,2007, 53(12) :4655-4666.

二级参考文献25

  • 1E Candes, J Romberg. Quantitative robust uncertainty principles and optimally sparse decompositions[ J]. Foundations of Com- putational Mathematics, 2006,6(2) : 227 - 254.
  • 2E Candes, J Romberg, T Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[ J]. IEEE Transaction on Information Theory, 2006, 52(2) :489 - 509.
  • 3E Candes, T Tao. Near-optimal signal recovery from random projections: Universal encoding strategies? [J]. IEEE Transaction on Information Theory,2006,52(12) :5406- 5425.
  • 4D L Donoho. Compressed sensing[ J]. IEEE Transaction on Information Theory,2006,52(4) : 1289 - 1306.
  • 5D L Donoho, Tsaig Y. Extensions of compressed sensing[ J]. Signal Processing, 2006,86(3) : 533 - 548.
  • 6Mallat S,Z Zhang. Matching pursuit in a time-frequency dictionary[J].IEEE Transaction on Signal Processing, 1993,41 (12) :3397 - 3415.
  • 7K Schnass, P Vandergheynst. Dictionary preconditioning for greedy algorithms [ J ]. IEEE Transaction on Signal Process, 2008,56(5) : 1994 - 2002.
  • 8S S Chen, D L Donoho, M A Saunders, etc. Atomic decomposition by basis pursuit[ J] . SIAM Journal of Scientific Computing, 1998,20(1 ) :33 - 61.
  • 9D L Donoho. For most large underdetermined systerns of linear equations the minimal Ll-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics,2006,59(6) :797 - 829.
  • 10J J Fuchs. Recovery of exact sparse representations in the presence of bounded noise[ J ]. IEEE Transaction on Information Theory, 2005,51 (10) : 3601 - 3608.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部