期刊文献+

人体通信信道相位特性研究 被引量:1

Phase Characterization of RF Signal Coupling with Human Body
下载PDF
导出
摘要 采用实验统计方法研究人体信道在1 ~200 MHz频段下的传播延时和相位特性.实验采用13名志愿者分别进行4个传播路径的群延时测量,并将测试频段划分为1~100 MHz和100~200 MHz两个子频段进行研究,探讨4个传播路径和两个子频段下的延时特性.统计分析表明:信号在人体通信信道的传播延时和传播路径无关;100 ~ 200 MHz频段内的传播延时均比1~100 MHz内的传播延时大.1~200 MHz频段内相位归一化曲线表明:在20~40 MHz频段信号畸变较大.根据最大似然估计算法(Maximum Likelihood Estimation,MLE)和Akaike信息量准则(Akaike Information Criterion,AIC),信号相位归一化偏差值符合Lognormal分布. To continuously monitor health information using wireless sensors placed on a person is a promising application. Human body communication (HBC) is proposed as a low power, security and light-weight communication technology that could be applied in aforementioned applications. In this pa- per, the characteristic of HBC propagation delay and phase deviation are investigated for the first time in the frequency bands: 1 -200 MHz. In order to investigate the propagation delay in different transmit paths and different frequency bands, the 1 -200 MHz frequency band is divided into two sub- bands : 1 -100 MHz and 100 - 200 MHz and the four measurement paths are set on every volunteer. The statistical analysis of measurement date show that the propagation delay is independent on transmit path. However, from 1 MHz to 100 MHz the delay is generally longer than that in the frequency band 100 - 200 MHz. The normalized phase deviation curve indicates that the phase deviation is larger in frequency band 20- 40 MHz compared with other measured frequency band. Lognormal model is found to be the best fitting dislribution for the normalized phase deviation according the Maximum Likeli- hood Estimation (MLE) and Akaike Information Criterion (AIC).
出处 《电视技术》 北大核心 2014年第15期203-206,共4页 Video Engineering
关键词 人体通信 传播延时 相位偏差 统计分析 human body communication propagation delay phase deviation statistical analysis
  • 相关文献

参考文献14

  • 1LATRE B, BRAEM B,MOERMAN I, et al. A survey on wireless body area networks [ J ]. Wireless Networks,2011,17 ( 1 ) : 1-18.
  • 2ROELENS L, JOSEPH W, REUSENS E, et al. Charaeterization of scatter- ing parameters near a flat phantom for wireless body area networks [ J ]. IEEE Trans. Electromagnetic Compatibility,2008,50( 1 ) :185-193 .
  • 3ZHANG Y P, LI Q. Performance of UWB impulse radio with planar monopoles over an-human-body propagation channel for wireless body ar- ea networks [ J ]. IEEE Trans. Antennas and Propagation,2007,55 (10) : 2907-2914.
  • 4MONTON E, HERNANDEZ J, BLASCO J, et al. Body area network for wireless patient monitoring[J], lET eations ,2008,2(2) :215-222.
  • 5ZIMMERMAN T G. Personal area networks: near-field intrabody eom- munication[J]. IBM Systems Journa/,1996,35(3/4) : 609-617.
  • 6SEYEDI M , KIBRET B , LAID T H, et al. A survey on intrabody com- munications for body area network applications [ J ]. IEEE Trans. Bio- medical Engineering, 2013,60( 8 ) :2067-2079.
  • 7WEGMUELLER M S,OBERLE M, FELBER N, et al. Signal transmis- sion by galvanic coupling through the human body[J]. IEEE Trans. In- strumentation and Measurement ,2010, 59(4) :963-969.
  • 8XU R,ZHU H J,YUAN J. Electric-field intrabody communication chan- nel modeling with finite-element method [ J ]. IEEE Trans. Biomedical Engineering,2011,58 (3) :705-712.
  • 9FUJII K ,TAKAHASHI M, ITO K. Electric field distributions of wearable devices using the human body as a transmission channel [ J ]. IEEE Trans. Antennas and Propagation, 2007,55 (7) :2080-2087.
  • 10HAGA N, SAITO K,TAKAHASHI M,et al. Equivalent circuit of intra- body communication channels inducing conduction currents inside the human body[ J ]. IEEE Trans. Antennas and Propagation ,2013,61 (5) : 2807 -2816.

同被引文献10

  • 1NIE Z D,MA J J,LI Z C, et al. Dynamic propagation channel char- acterization and modeling for human body communication [ J ]. Sen- sors, 2012, 12(12) :1757-1763.
  • 2ZIMMERMAN T G. Personal area networks: near-field intra-body- communication [ J]. BmYmJornal, 1996, 35 (3) :609-617.
  • 3HACHISUKA K. Development and performance analysis of an intra- body communication device [ C ]//Proc. 12th International Confer- ence on Transducers, Solid-state Sensors, Actuators and Microsys- tems.[ S. 1. ] :IEEE Press, 2003 : 1722-1725.
  • 4WEGMUELLER M S, OBERLE M, FELBER N, et al. Signal transmission by galvanic coupling through the human body [ J ]. Nrmnaon and MarmnRanaon on, 2010, 59(4) :963-969.
  • 5NIE Z D, LENG T F, WANG W C, et al. In-situ characterizations of 1-200MHz radio-frequency signal coupling with human body [ J]. Biomedical Engineering-Applications Basis Communications, 2012, 24(3) : 285-294.
  • 6BALDUS H. Human-centric connectivity enabled by body-coupled communications- consumer communications and networking [ J ]. IEEE of Communications Magazine,2009 (6) : 172-178.
  • 7CHO N, YOO J, SONG S J, et al. The human body characteristics as a signal transmission medium for intra-body communication [ J]. IEEE Trans. Microwave Theory and Techniques, 2007,55 ( 5 ) : 1080-1086.
  • 8CHO N, YAN L, BAE J, et al. A 60 kb/s 10 Mb/s adaptive fre- quency hopping transceiver for interference-resilient body channel communication [ J ]. IEEE of Solid - State Circuits, 2009 ( 3 ) : 708 -717.
  • 9IEEE802.15. 6. IEEE standard for local and metropolitan area net- works-part 15.6 : wireless body area networks[ S]. 2012.
  • 10Nie Zedong,Guan Feng,Huang Jin,Wang Lei.Low Power Single-Chip RF Transceiver for Human Body Cormunication[J].China Communications,2012,9(9):1-10. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部