期刊文献+

光照不均人脸图像的子空间人脸识别方法研究 被引量:3

Study of Subspace Face Recognition Methods for Uneven Illumination Facial Image
下载PDF
导出
摘要 针对人脸识别中存在的光照不均匀问题,提出了一种预处理链技术,能达到很好的光照补偿效果。为了提高多姿态、多表情、多细节人脸图像的人脸识别率,设计了一种将最近邻分类器与支持向量机相结合的分类算法(NN-SVM),基于该分类算法提出了一种基于Gabor变换和NN-SVM的子空间人脸识别方法。在FERET和ORL两大人脸数据库中对所提方法进行性能评估,实验结果表明所提出方法能有效地解决人脸识别中光照不均匀问题,大大提高人脸识别率,而且相比其他现有的人脸识别方法,所设计的方法具有更好、更稳定的识别效果。 Aiming at the problems of uneven illumination in face recognition, a pro-processing chain technology is proposed which can achieve an excellent illumination compensation effect. In order to improve the face recognition rate of facial images with variations in pose ,expressions and details, a clas- sification method combination of nearest neighbor classifier and support vector machine (SVM) is designed and a robust subspace face recognition method is proposed,that is BDPCA + LDA algorithm based on Gabor transform and NN-SVM classification algorithm. The performance of proposed strategy is e- valuated on FERET and ORL face databases. Experimental results show that the proposed technology can solve the problems of uneven illumination in face recognition effectively and improve the face recognition rate sharply. Compared with other existing face recognition methods,the designed method has a better and more stable recognition effect.
出处 《电视技术》 北大核心 2014年第15期217-221,共5页 Video Engineering
基金 国家自然科学基金项目(61075105)
关键词 人脸识别 子空间分析 预处理链 GABOR变换 face recognition subspace analysis pre-processing chain Gabor transform
  • 相关文献

参考文献13

  • 1RUSS J C. Tile image processing handbook: The third edition[ M ]. New York : CRC Press LLC, 1999 : 194-205.
  • 2TURKAND M,PENTLAND A. Eigenfaces for face recognition[ J ]. Jour- nal of Cognitive Neuroscience, 1991,3 ( 1 ) :72-86.
  • 3YAMBOR W S,DRAPER B A,BEVERIDGE J R. Analyzing PCA-based face recognition algorithms: eigenvectors selection and distance measures [ C]//Proc. the 2nd Workshop on Empirical Evaluation in Computer Vi- sion. Dublin, Ireland : [ s. n. ] ,2000 : 1990-1997.
  • 4YU H, YANG J. A direct LDA algorithm for high dimensional data with application to face recognition [ J ]. Pattern Recognition, 2001,34 ( 110 ) : 2067-2070.
  • 5TAN Xiaoyang, TR1GGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions [ J ]. IEEE Trans. Image Processing,2010,19(6) : 168-182.
  • 6LIU C ,WECHSLER H. Gabor featu based classification using the en- hanced fisher linear discriminate model for face recognition [ J ]. 1EEE Trans. Image Processing,2002,10(4) :467-476.
  • 7TORKKOLA K. Linear discriminate analysis in document classification [ EB/OL]. [2013-10-24 ]. http://citeseerx, ist. psu. edu/viewdoc/sum- mary? doi =10. 1,1. 106.6309&rank =1.
  • 8杨金锋,杨国庆,吴仁彪.减少光照影响的自适应Gamma矫正方法[J].信号处理,2005,21(z1):261-264. 被引量:14
  • 9GOD高斯差分分析[EB/OL].[2013-10-24].http://blog.csdn.net/liulina603/article/details/8651242.
  • 10马颂德 张正友.计算机视觉[M].北京:科学出版社,1998.72-80.

二级参考文献22

  • 1[1]G. Finlayson, B. Funt, J. Barnard, Colour constancy under a varying illumination, ICCV, 1995, pp.720-725.
  • 2[2]B. Funt, K. Barnard, L. Martin, Is machine colour constancy good enough?, ECCV, 1998, pp. 445-459.
  • 3[3]C.H. Lee, J.S. Kim, K.H. Park, Automatic human face location in a complex background using motion and color information, PR, 1996, 29(11), pp. 1877-1889.
  • 4[4]M. Soriano, B. Martinkauppi, S. Huovinen, Skin detection in video under changing illumination conditions, ICPR ,2000, pp.839-842.
  • 5[5]R-H. Hsu, M. Abdel-Mottaleb, A.K. Jain, Face detection in color images, PIMI, 2002, 24(5), pp.696-706.
  • 6[6]H.F. Lau, M.D. Levine, Finding a small number of regions in an image using low-level features, PR, 2002, 35(10),pp.2323-2339.
  • 7[7]L. Lucchese, S.K. Mitra, Color image segmentation: A State-of-the-Art Survey, Proc. Indian National Science Academy (INSA-A), 2001, Vol. 67, pp.207-221.
  • 8[8]H. Farid, Blind inverse Gamma correction, IEEE Trans.on Image Processing, 2001, 10(2), pp. 1428-1433.
  • 9[9]A. Siebert, Differential Invariants under Gamma Correction, Vision Interface 2000, Montreal.
  • 10Fattal R, Lishinski D, Werman M. Gradient domain high dynamic range compression [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH,New York, 2002. 249~256.

共引文献216

同被引文献20

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部