期刊文献+

一种基于混合高斯的快速背景更新方法 被引量:1

Method of Quick Background Updating Based on Gaussian Mixture Models
下载PDF
导出
摘要 针对传统混合高斯模型对场景的突然变化不能实时更新和RunningAvg更新算法中容易产生拖影的问题,提出了一种快速背景更新方法。首先建立混合高斯和RunningAvg两幅背景,基于它们的二值化差分图像DB获取变化区域;将DB与前景二值化图像FB进行逻辑"与"以准确提取变化区域,消除拖影对目标提取的影响。然后根据变化区域的变化情况,用状态表中所记录的变化区域信息对背景模型的变化区域进行有选择的更新,减少了背景模型对变化区域的更新时间。实验结果表明,该方法不仅能对场景的突然变化具有很强的适应性,而且避免了拖影现象和物体短暂停留所造成的干扰。 The traditional mixture Gaussian models can not respond promptly to sudden changes in the background,and the smear phenomenon is inevitable in the RunningAvg update algorithm. Therefore ,an approach for quick background updating method is proposed. Firstly ,two backgrounds are constructed separately based on the Gaussian mixture models and the RunningAvg update algorithm. Then the binarized differential image DB of the two backgrounds is obtained to get the regions of variation in the scene. Logical "and" operation is utilized between the binary image DB and the binary fore- ground image FB in order to extract the regions of variation accurately,which can eliminate the negative impacts resulted from the smear phenomenon. Af- terwards,the information of the regions of variation,which is saved in the state table,is used to update the background models selectively depending on the changes in the regions of variation. As a result, the updating time of the regions of variation in the background models is reduced. The results have shown that the proposed method can not only strongly adapt to the sudden changes of the scene, but also can efficiently avoid the interference caused by the smear phenomenon and the short-term stay of the objects.
出处 《电视技术》 北大核心 2014年第15期240-243,276,共5页 Video Engineering
基金 国家自然基金面上项目(61171077) 交通部应用基础研究项目(2011-319-813-510) 南通大学创新人才基金项目(2009)
关键词 混合高斯 背景更新 变化区域 拖影 状态表 gaussian mixture background update regions of variation smear state table
  • 相关文献

参考文献13

  • 1杨宁,杨敏.基于改进的混合高斯模型的运动目标提取[J].计算机技术与发展,2012,22(7):20-23. 被引量:2
  • 2薛茹,宋焕生,张环.基于像素的背景建模方法综述[J].电视技术,2012,36(13):39-43. 被引量:9
  • 3CUCCHIARA R,GRANA C,PICCARDI M,et al. Detecting moving ob- jects, ghosts and shadows in video streams [ J ]. Pattern Analysis and Ma- chine Intelligence ,2003,25 (10) : 1337-1342.
  • 4孙永生,刘大健,秦蒙.多幅图像中值法在滤除噪声中的应用[J].电视技术,2012,36(23):15-17. 被引量:3
  • 5KASHANI H B. Background estimation in kernel space[ J ]. International Journal of Pattern Recognition and Artificial Intelligence, 2011,25 ( 1 ) : 1-35.
  • 6ZHENG Yi, FAN Liangzhong. Moving object detection based on running average background and temporal difference [ C ]//Prnc. International Conference on Intelligent Systems and Knowledge Engineering (ISKE). Hanhou : IEEE Press ,2010:270-272.
  • 7KIM K,CHAL1DABHONGSE T H,HARWOOD D,et al. Real-time fore- ground-background segmentation using codebook model [ J ]. Special Issue on Video Object Processing,2005,11 ( 3 ) : 172-185.
  • 8MCFARLANE N J B,SCHOELD C P. Segmentation and tracking of piglets in image[J]. Machine Vision and Applications,199'5,8(3) :187-193.
  • 9MORDE A, MA X, GULER S. Learning a background model for change detection[ C]//Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops). [ S. 1. ] :IEEE Press ,2012 :15-20.
  • 10刘鑫,刘辉,强振平,耿续涛.混合高斯模型和帧间差分相融合的自适应背景模型[J].中国图象图形学报,2008,13(4):729-734. 被引量:110

二级参考文献69

共引文献207

同被引文献12

  • 1袁基炜,史忠科.一种快速运动目标的背景提取算法[J].计算机应用研究,2004,21(8):128-129. 被引量:15
  • 2MANUEL V, JOSE M M, FEDERICO B. An enhanced back- ground estimation algorithm for vehiele detection in urban traffic scenes[J]. IEEE Trans. Vehicular Technology, 2010, 59 (8) : 3694-3709.
  • 3STAUFFER C,GRIMSON W. Adaptive background mixture mod- els for real-time tracking[C1//Proc. Computer Vision and Pattern Recognition. LISA : IEEE Press, 1999 : 246-252.
  • 4EI,GAMMAL A, DURAISWAM R, DAVIS L S. Eflieient kernel density estimation using the fast Gauss transfi)rm with applica- tion to segmentation and traeking[C]//Proc, the 8+ IEEE Interna- tional Conference on Computer Vision. Canada: IEEE Press, 2001,25( 11 ) : 1499-1504.
  • 5KAEW T P, BOWDEN R. An improved adaptive background mix- ture model for reahime tracking with shadow detection[C]// Prnc. the 2rid European Worksbup nn Advanced Video Based Surveil- lanee Systems, Kingston: Kluwer Academic Publishers, 2001,53 (8): 1-5.
  • 6ZIVKOVIC Z, VANDER H F. Recursive unsupervised learning of finite mixture models[J]. IEEE Trans. Pattern Analysis and Ma- chine Intelligence, 2004,26(5 ) : 651-656.
  • 7ANURAG M, NIKOS P. Moti.n-Based background subtraction using adaptive kernel density estimatinn[C]// Proc. the 2004 IEEE Conference on Computer Vision and Pattern Reeognition. USA : IEEE Press, 2004,2 : 302-309.
  • 8KATO J, JOGA S, RITTSCHER J. An HMM-based segmenta- tion method for traffic monitoring movies[J]. IEEE Trans. Pat- tern Analysis anti Machine Intelligence, 2002, 24 (9) : 1291-1296.
  • 9MONNET A, MITTAL A, PARAGIOS N. Baekgrnund modeling and subtraction of dynamic scenes[C]// Proc. the 9th IEEE Inter- taational Conference on Computer Vision. France: IEEE Press, 2003: 1305-1312.
  • 10TOYAMA K, KRUMM J, BRUMITT B. Wallflower: principles and practice of background maintenance[C]// Prnc. the 1999 IEEE Conference on Computer Vision and Pattern Reeogoition. USA : IEEE Press, 1999 : 256-261.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部